
CALL FOR PAPERS Regulation of Cell Signaling Pathways

Molecular mechanisms of the angiogenic effects of low-energy shock wave
therapy: roles of mechanotransduction

Kazuaki Hatanaka,1,2 Kenta Ito,1,2 Tomohiko Shindo,1 Yuta Kagaya,1 Tsuyoshi Ogata,1 Kumiko Eguchi,1

Ryo Kurosawa,1 and Hiroaki Shimokawa1,2

1Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and 2Department
of Innovative Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Submitted 26 May 2016; accepted in final form 7 July 2016

Hatanaka K, Ito K, Shindo T, Kagaya Y, Ogata T, Eguchi K,
Kurosawa R, Shimokawa H. Molecular mechanisms of the angio-
genic effects of low-energy shock wave therapy: roles of mechano-
transduction. Am J Physiol Cell Physiol 311: C378–C385, 2016. First
published July 13, 2016; doi:10.1152/ajpcell.00152.2016.—We have
previously demonstrated that low-energy extracorporeal cardiac shock
wave (SW) therapy improves myocardial ischemia through enhanced
myocardial angiogenesis in a porcine model of chronic myocardial
ischemia and in patients with refractory angina pectoris. However, the
detailed molecular mechanisms for the SW-induced angiogenesis
remain unclear. In this study, we thus examined the effects of SW
irradiation on intracellular signaling pathways in vitro. Cultured
human umbilical vein endothelial cells (HUVECs) were treated with
800 shots of low-energy SW (1 Hz at an energy level of 0.03
mJ/mm2). The SW therapy significantly upregulated mRNA expres-
sion and protein levels of vascular endothelial growth factor (VEGF)
and endothelial nitric oxide synthase (eNOS). The SW therapy also
enhanced phosphorylation of extracellular signal-regulated kinase 1/2
(Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphor-
ylation of caveolin-1 and the expression of HUTS-4 that represents
�1-integrin activity. These results suggest that caveolin-1 and �1-
integrin are involved in the SW-induced activation of angiogenic
signaling pathways. To further examine the signaling pathways in-
volved in the SW-induced angiogenesis, HUVECs were transfected
with siRNA of either �1-integrin or caveolin-1. Knockdown of either
caveolin-1 or �1-integrin suppressed the SW-induced phosphorylation
of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown
of either caveolin-1 or �1-integrin also suppressed SW-induced en-
hancement of HUVEC migration in scratch assay. These results
suggest that activation of mechanosensors on cell membranes, such as
caveolin-1 and �1-integrin, and subsequent phosphorylation of Erk
and Akt may play pivotal roles in the SW-induced angiogenesis.

shock wave; mechanotransduction; angiogenesis; caveolin-1; �1-in-
tegrin

SHOCK WAVES (SW) have been clinically introduced for litho-
tripsy since the 1980s; urinary stones are broken up by high-
energy SW (7). The waveform of an SW is similar to that of a
blast wave, which is composed of discontinuous compression
of leading shock propagating with supersonic speed, subse-
quent rarefaction, and negative pressure (27). Over the past 20
years, low-energy SW therapy has also been put into clinical
application (3, 17). We have previously demonstrated that

low-energy SW (about 10% of the energy used for urolitho-
tripsy treatment) significantly upregulated vascular endothelial
growth factor (VEGF) in human umbilical vein endothelial
cells (HUVECs) (25). Low-energy SW therapy has also been
reported to enhance nitric oxide (NO) production via activation
of endothelial NO synthase (eNOS) in vitro (23, 24). We have
demonstrated that extracorporeal low-energy cardiac SW ther-
apy enhances angiogenesis and contractile function in a por-
cine model of chronic myocardial ischemia and in patients with
refractory angina pectoris without any adverse effects (12, 19,
25). Moreover, low-energy SW therapy has been widely used
for treatment of orthopedic diseases, such as bone nonunions,
tendinosis calcarea, epicondylitis, and calcaneal spur through
anti-inflammatory effects (3, 26, 37).

Although we have demonstrated that extracorporeal cardiac
SW therapy is an effective and noninvasive therapy for severe
ischemic heart disease, the detailed molecular mechanisms of
the SW-induced angiogenesis remain unclear. Vascular endo-
thelial cells, which cover the inner surface of blood vessels, are
exposed to fluid shear stress caused by blood flow and transmit
extracellular mechanical stimuli to intracellular signaling path-
ways, leading to angiogenesis, cell proliferation, vasodilata-
tion, and antithrombotic effects (6, 14, 21, 36). This process is
called mechanotransduction. Many molecules have been re-
ported to play important roles in mechanotransduction, includ-
ing ATP-gated P2X4 purinoceptor, transient receptor potential
channels, mechanosensitive channels, and cytoskeletons (4, 8,
41). Caveolins, integrins, and their complex have also been
proposed as mechanotransducers that could convert physical
stresses into biochemical signals and have been reported to be
involved in angiogenesis and proliferation cascades (9, 28, 29).
Therefore, we paid attention to vascular endothelial cells
among various types of cells in the present study and examined
whether caveolin-1 and �1-integrin play important roles in
sensing mechanical stress induced by low-energy SW, and, if
so, we aimed to elucidate the downstream signaling pathways.

METHODS

Cell culture and SW therapy. Single-donor HUVECs were used as
in our previous study (25). Cells were purchased from Lonza (Basel,
Switzerland) and were cultured in a complete endothelial cell growth
medium (EGM-2 BulletKit; Lonza). The same batch of cells were
used in all experiments at passages 3 to 5 and were maintained in
EGM-2. The cells at the same passage were used for each set of
experiments. Twenty-four hours before the SW therapy, the cells (5 �
104) were resuspended in about 1.8-cm2 cell culture plates. We treated
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the cells with 800 shots of SW with 1 Hz at an energy level of 0.03
mJ/mm2 using an SW system (Duolith SD1; Storz Medical, Täger-
wilen, Switzerland) based on our preliminary studies (Fig. 1A). In the
preliminary studies, low-energy levels of SW (�0.03–0.10 mJ/mm2;
�10% of the energy density used for urolithiasis) enhanced VEGF
expression in HUVECs. The energy level of 0.03 mJ/mm2 was the
highest energy level that allowed us stable measurements without cell
detachment from the surface of the culture plates.

Lactate dehydrogenase assay. To evaluate potential cell damage
induced by SW, the activity of lactate dehydrogenase (LDH) in the
supernatants of treated cells was quantified using the LDH cytotox-
icity detection kit (Takara Bio, Kusatsu, Japan). The cell-free super-
natants were collected and incubated with the reaction mixture from
the kit, and the LDH activity was determined by an enzymatic
reaction, which generates formazan and dyes the supernatant a red
color, the intensity of which directly correlates with the LDH activity.
FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices,
Sunnyvale, CA) was used for measuring the absorbance of the
samples at 490 nm. Triton X-100 (1%; Sigma-Aldrich, St. Louis, MO)
solution was used to induce maximal cell damage in the cultured cells.
Twenty-four and 48 h after SW irradiation, cell damage was evaluated
with LDH activity.

RNA isolation, real-time PCR. Total RNA was isolated from
cultured HUVECs using a total RNA extraction kit (RNeasy Plus
Mini Kit; QIAGEN, Venlo, Netherlands). cDNA was synthesized
with the PrimeScript RT Master Mix (Takara Bio). The following
oligonucleotide primers were used in the present study: human

VEGF-A (GenBank Acc. NM_001025366.2) (forward) 5=-TCACAG-
GTACAGGGATGAGGACAC-3= and (reverse) 5=-CAAAGCACAG-
CAATGTCCTGAAG-3=; eNOS (GenBank Acc. NM_001160109.1)
(forward) 5=-AAAGACAAGGCAGCAGTGGAAAT-3= and (re-
verse) 5=-TCCACGATGGTCACTTTGGCTA-3=; and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) (GenBank Acc.
NM_002046.5) (forward) 5=-GCACCGTCAAGGCTGAGAAC-3=
and (reverse) 5=-TGGTGAAGACGCCAGTGGA-3=. After reverse
transcription, real-time PCR was performed with SYBR Premix Ex
Taq II (Takara Bio) and a CFX96 Real-Time system C1000 Thermal
Cycler (Bio-Rad, Hercules, CA). The PCR conditions were 40 cycles
of 2 s at 98°C and 5 s at 55°C. mRNA expression levels were
compared between the control and SW groups. Results are reported as
the quotients of the copy number of the gene of interest, relative to
that of GAPDH, as a housekeeping gene.

Western blot analysis. To quantify the expression levels of VEGF,
eNOS, phosphorylated eNOS (phospho-eNOS), Erk1/2, phospho-
Erk1/2, Akt, phospho-Akt, Fyn, phospho-Fyn, FAK, phospho-FAK,
caveolin-1, phospho-caveolin-1, �1-integrin, HUTS-4, and �-tubulin,
protein samples were loaded on SDS-PAGE gel and transferred to
PVDF membranes (GE Healthcare, Little Chalfont, Buckinghamshire,
UK). The membranes were immunoblotted with anti-VEGF (sc-507;
Santa Cruz Biotechnology, Dallas, TX), anti-eNOS (ADI-905-386;
Enzo, Farmingdale, NY), anti-phospho-eNOS (9571; Cell Signaling
Technology, Danvers, MA), anti-Erk1/2 (sc-94; Santa Cruz Biotech-
nology), anti-phospho-Erk1/2 (sc-7383; Santa Cruz Biotechnology),
anti-Akt (9272; Cell Signaling Technology), anti-phospho-Akt (4060;
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Fig. 1. Experimental setup and lactate dehydrogenase (LDH) assay. A: illustrations of experimental setup. B: low-energy shock wave (SW) therapy did not cause
cell injury (n � 6 each). Results are expressed as means � SD. **P � 0.01 in each comparison.
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Cell Signaling Technology), anti-Fyn (4023; Cell Signaling Technol-
ogy), anti-phospho-Fyn (6943; Cell Signaling Technology), anti-FAK
(3285; Cell Signaling Technology), anti-phospho-FAK (8556; Cell
Signaling Technology), anti-caveolin-1 (610407; BD Biosciences,
Franklin Lakes, NJ), anti-phospho-caveolin-1 (3251; Cell Signaling
Technology), anti-�1-integrin (ab52971; Abcam, Cambridge, UK),
and anti-HUTS-4 (LS-B2861; LifeSpan BioSciences, Seattle, WA).
The regions containing proteins were visualized by an electrochemi-
luminescence Western blotting luminal reagent (RPN2232, GE
Healthcare).

Small-interference RNA and its transfection. Small-interference
RNA (siRNA) duplex targeting caveolin-1, �1-integrin, Fyn, and FAK
was purchased from QIAGEN. A functional nontargeting siRNA that
was bioinformatically designed by QIAGEN (AllStars Negative Con-
trol siRNA) was used as a control. HUVECs were transfected with
HiPerFect Transfection Reagent (QIAGEN) with 10 nmol/l siRNA
specific for each protein. Seventy-two hours after siRNA transfection,
HUVECs were treated with SW and mRNA, or protein expressions
were evaluated. Efficacy of knockdown was assessed 72 h after
transfection by real-time PCR and Western blot analysis.

Scratch assay. As one of the indices of angiogenesis, scratch assay
was performed in HUVECs (22). To further elucidate the roles of
mechanotransduction on the SW-induced angiogenesis, scratch assay
was performed with siRNA targeting either caveolin-1 or �1-integrin
and scramble siRNA. Cells were seeded on six-well plates and grown
to confluence. The cell monolayers were scratched with a cell scraper
and photographed at 0, 24, and 48 h after SW irradiation (33).
Distances between one side of the scratch and the other were mea-
sured with image analysis software ImageJ.

Statistical analysis. All results are expressed as means � SD.
Statistical comparisons between two groups were performed by Stu-
dent’s t-test. Multiple groups were analyzed by one-way ANOVA
followed by Tukey’s or Games-Howell multiple-comparison test as
appropriate to determine statistical significance. Probability values
�0.05 were considered statistically significant.

RESULTS

LDH assay. To evaluate cell damage induced by the SW, we
performed LDH assay in HUVECs. There was no difference in
the degree of LDH release between the SW group and the
control group (Fig. 1B), suggesting that the low-energy SW
used in the present study did not cause cell injury.

Effects of the SW therapy on the expression of angiogenic
factors. To study the molecular mechanisms for the SW-
induced angiogenic effects, mRNA expression of VEGF and
eNOS was evaluated. The SW therapy significantly upregu-
lated the expression of VEGF and eNOS (Fig. 2A). Protein
levels of VEGF and eNOS were also enhanced by the SW
therapy (Fig. 2, B and C). The phosphorylation of eNOS at
Ser1177 was enhanced by the SW therapy (Figure 2D).

Effects of the SW therapy on protein phosphorylation. To
elucidate the signaling pathways responsible for the SW-
induced upregulation of VEGF and eNOS, we examined the
phosphorylation state of several proteins. Immediately after the
SW therapy, phosphorylation of Erk1/2 (Thr202-Tyr204) and
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Fig. 2. Upregulation of angiogenic factors and
mechanoreceptors on cell membranes by SW
therapy. A: mRNA expression of vascular en-
dothelial growth factor (VEGF) and endothe-
lial nitric oxide synthase (eNOS) (n � 12
each). B: representative images of Western
blot analysis. C: quantitative data of protein
levels of VEGF, eNOS, caveolin-1 (Cav-1),
and �1-integrin (�1-Itg) (n � 6 each). D:
quantitative data of Western blot analysis for
phosphorylation state of eNOS at Ser1177 and
caveolin-1 at Tyr14 and the expression of
HUTS-4 (n � 6 each). Results are expressed
as means � SD. *P � 0.05, **P � 0.01
compared with the control group (without SW
therapy).
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Akt (Ser473) was significantly enhanced (Fig. 3). Because
FAK is known to be involved in mechanotransduction by
interacting with integrins and the Src family and in regulating
downstream MAP kinases (20, 44), we also examined the
phosphorylation state of FAK and Fyn. Phosphorylation of
FAK (Tyr397) was enhanced by the SW therapy, whereas that
of Fyn (pSrc) was not affected (Fig. 3).

Effects of the SW therapy on potential mechanosensors.
Because both caveolin-1 and �1-integrin on cell membranes
are known to play key roles in mechanotransduction (31, 34,
38, 43), we examined the protein levels of caveolin-1 and
�1-integrin. We also examined the phosphorylation state of
caveolin-1 and the expression of HUTS-4 that represents the
�1-integrin activity (10). The SW therapy significantly en-
hanced the protein levels of �1-integrin but not those of
caveolin-1 (Fig. 2, B and C). On the other hand, the SW
therapy significantly enhanced both the phosphorylation of
caveolin-1 and the �1-integrin activity (Fig. 2D).

Studies with siRNA. To further elucidate the signaling path-
ways involved in the SW-induced angiogenesis, HUVECs
were transfected with siRNA of either caveolin-1 or �1-integ-
rin. Knockdown of either caveolin-1 or �1-integrin suppressed
the SW-induced upregulation of VEGF and eNOS (Fig. 4, A
and B). Knockdown of either caveolin-1 or �1-integrin also
suppressed the SW-induced phosphorylation of Erk1/2 and Akt
(Fig. 4, C and D). Furthermore, knockdown of either Fyn or
FAK with siRNA also inhibited the SW-induced upregulation
of VEGF and phosphorylation of Erk1/2. Knockdown effi-
ciency of each molecule was �72–95% in the mRNA levels
(Fig. 4E) and �85–98% in the protein levels (Fig. 4F). These
results suggest that both caveolin-1 and �1-integrin play piv-
otal roles in the SW-induced angiogenesis and that Fyn, FAK,
Erk1/2, and Akt are also involved in the SW-induced angio-
genic effects.

Effects of the SW therapy on cell migration. To confirm the
effects of the SW therapy on cell migration and to elucidate the
roles of caveolin-1 and �1-integrin in the process, we per-
formed scratch assay. The SW therapy significantly enhanced
cell migration (Fig. 5A), which was blunted by knockdown of
either caveolin-1 or �1-integrin with siRNA (Fig. 5, B and C).

DISCUSSION

In the present study, we demonstrated that the mechano-
transduction system, including caveolin-1 and �1-integrin and
its downstream pathways, plays pivotal roles in the upregula-
tion of angiogenic factors induced by low-energy SW. To the
best of our knowledge, this is the first study that demonstrates
the importance of membrane proteins caveolin-1 and �1-integ-
rin in the SW-induced angiogenic responses.

Potential intracellular signaling pathways for angiogenic
effects of SW therapy. We have previously demonstrated that
SW therapy upregulates mRNA expression of VEGF in HUVECs
in vitro and ameliorates myocardial ischemia in a porcine
model of chronic myocardial ischemia in vivo (25) and in
patients with refractory angina pectoris (12, 19). However, the
detailed molecular mechanisms of the angiogenic effects of
SW therapy remain to be elucidated. Living cells recognize
their surrounding environment by sensing deformation and
mechanical forces and transmitting extracellular mechanical
stimuli into biochemical signals (14). Mechanosensitive feed-
back modulates cellular functions, such as proliferation, dif-
ferentiation, migration, and apoptosis, and is also crucial to
maintain cytoskeletal structure and homeostasis (14). In the
present study, we confirmed that SW therapy affects the
mechanotransduction pathways. It has been reported that cave-
olae are disassembled in response to physical stress but rapidly
restore their structure in the resting condition (35). Because
caveolin-1 and �1-integrin, both of which are important com-
ponents of caveolae membranes, are known to play key roles in
mechanotransduction (9, 16, 28, 29), we focused on caveolin-1
and �1-integrin and their downstream pathways. In the present
study, we demonstrated that SW therapy upregulated the ex-
pression of VEGF and eNOS and also enhanced phosphoryla-
tion of Erk1/2 and Akt, which are known to be involved in cell
proliferation (45). Furthermore, experiments with siRNA re-
vealed that knockdown of either caveolin-1 or �1-integrin
blunted the SW-induced upregulation of VEGF and eNOS and
phosphorylation of Erk1/2 and Akt. These results suggest that
both caveolin-1 and �1-integrin are indispensable for SW-
induced angiogenesis. We also elucidated that SW therapy
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activates the focal adhesion pathway. FAK is a kinase that
plays a critical role in integrin-mediated signal transductions
and also participates in signaling pathways derived from other
cell surface receptors (46). Mechanical stimuli, such as shear
stress, phosphorylate FAK at Tyr397, transmit extracellular
signals to downstream pathways, and activate Akt and MAP
kinase (20). In the present study, we demonstrated that SW
therapy enhances phosphorylation of FAK and that knockdown
of FAK suppresses the SW-induced phosphorylation of Erk1/2.
Knockdown of Fyn suppressed the SW-induced phosphoryla-
tion of Erk1/2 and Akt. Fyn and FAK are reported to be
downstream molecules of caveolin-1 and �1-integrin, respec-
tively (38). These results suggest that SW therapy enhances
angiogenic signaling pathways by stimulating caveolae on
endothelial membranes with subsequent activation of the focal
adhesion pathway (Fig. 6). Although negative control siRNA
had no effects on the levels of VEGF, eNOS, or p-Erk/t-Erk,

the p-Akt/t-Akt levels with the negative control siRNA were
rather lower than those without it. This might be due to
off-target effects of siRNA (18).

Regulation of the expression of angiogenic factors. In the
present study, although both mRNA and protein levels of
VEGF and eNOS increased in response to SW irradiation,
mRNA and protein did not change in parallel. Also, the time
course of VEGF mRNA expression after SW therapy showed
sustained or bimodal upregulation. These results suggest that
multiple pathways are involved in upregulation of VEGF and
eNOS and that the expression of VEGF and eNOS is posttran-
scriptionally regulated. Knockdown of Fyn reduced the SW-
induced upregulation of VEGF but not that of eNOS, suggest-
ing that the upregulation of VEGF and eNOS was mediated by
different pathways.

Roles of caveolin-1 in cell migration. In the scratch assay,
the SW-enhanced cell migration was blunted by knockdown of
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either caveolin-1 or �1-integrin (Fig. 5). Furthermore, cell
migration was reduced by knockdown of caveolin-1 at 24 and
48 h after SW therapy. These results suggest that caveolin-1
plays a crucial role in migration even under basal conditions
without SW irradiation.

Roles of caveolae in the effects of SW. Caveolae are invag-
inated organelles that are found in the plasma membrane
ubiquitously. Caveolin-1, a constitutive protein of caveolae,
has been implicated in the regulation of cell growth, lipid
trafficking, endocytosis, and cell migration (31). Phosphoryla-
tion of caveolin-1 at Tyr14 is involved in the integrin-regulated
caveolae trafficking and also in signaling at focal adhesions in
migrating cells (31). �1-Integrin is also an important compo-
nent of caveolae membranes (28, 16, 40). In the present study,
SW therapy enhanced protein levels of �1-integrin, but not
those of caveolin-1, and enhanced the phosphorylation state of
caveolin-1 and �1-integrin activity. Activation of �1-integrin
and phosphorylation of caveolin-1 have been reported to me-
diate the shear stress-induced intracellular signaling (30). In
addition, �1-integrin-mediated activation of Erk1/2 and Akt is
mediated by caveolin-1 (11). These findings suggest the im-
portance of close interactions between caveolin-1 and �1-
integrin. It has been reported that SW therapy enhances cell
proliferation through activating Erk1/2 (39), a consistent find-
ing with the present result of the scratch assay. Furthermore,
we demonstrated that SW-induced enhancement of cell migra-
tion was blunted by the knockdown of caveolin-1 or �1-
integrin with siRNA. These results indicated that both caveo-
lin-1 and �1-integrin in caveolae are required in SW-induced
angiogenic responses. However, it is still not clear whether SW

therapy drives mechanotransduction by directly impinging on
endothelial cell membranes or by flow-induced shear stress.
Further studies are needed.

Study limitations. Several limitations should be mentioned
for the present study. First, in the present study, we mainly
examined intracellular signaling pathways that are related to
angiogenesis. We have previously reported that low-energy
SW therapy suppresses post-MI left ventricular remodeling in
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rats through its anti-inflammatory effects in addition to its
angiogenic effects (1). Thus other intracellular signaling path-
ways may also be involved in the beneficial effects of SW.
Second, in the present study, we only examined the molecular
mechanisms of the angiogenic effects of SW therapy in vitro.
To confirm the potential intracellular signaling pathways, in
vivo studies with genetically modified animals (e.g., caveolin-1
knockout mice) may be useful. Third, it was previously re-
ported that vascular endothelial cadherin, platelet endothelial
cell adhesion molecule-1, and Toll-like receptor 3 may also be
involved in the effects of SW therapy (13, 15). Thus it is
possible that these molecules interact with caveolin-1 and
�1-integrin. Fourth, in the present study, we only examined the
effects of low-energy SW therapy in HUVECs. However, other
cell types, such as vascular smooth muscle cells, fibroblasts,
cardiac myocytes, and inflammatory cells, and complex inter-
actions among various cell types may also play important roles
in the ischemic myocardium. All these points remain to be
examined in future studies.

Clinical implications. Low-energy SW therapy has been
reported to promote migration and differentiation of bone
marrow-derived mononuclear cells (32, 42), and the effects of
the combination therapies of cell transplantation and SW have
also been reported (2, 5). Understanding of the detailed mech-
anisms of SW-induced angiogenesis may enable us to develop
new therapeutic strategies (e.g., combination of pharmacother-
apy and SW therapy).

Conclusions. In the present study, we were able to demon-
strate that SW therapy may enhance angiogenic signaling
pathways through mechanotransduction proteins (caveolin-1
and �1-integrin) in caveolae and its downstream pathways
(e.g., FAK, Erk1/2, Akt, and eNOS).
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