

ISSN: 1074-9357 (Print) 1945-5119 (Online) Journal homepage: https://www.tandfonline.com/loi/ytsr20

The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and meta-analysis

Rosa Cabanas-Valdés, Jordi Calvo-Sanz, Gerard Urrùtia, Pol Serra-Llobet, Albert Pérez-Bellmunt & Ana Germán-Romero

To cite this article: Rosa Cabanas-Valdés, Jordi Calvo-Sanz, Gerard Urrùtia, Pol Serra-Llobet, Albert Pérez-Bellmunt & Ana Germán-Romero (2019): The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and metaanalysis, Topics in Stroke Rehabilitation, DOI: <u>10.1080/10749357.2019.1654242</u>

To link to this article: <u>https://doi.org/10.1080/10749357.2019.1654242</u>

Published online: 11 Nov 2019.

-	_	
L		
н	1	

Submit your article to this journal 🖸

Article views: 69

💽 View related articles 🗹

🌗 View Crossmark data 🗹

Check for updates

The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and meta-analysis

Rosa Cabanas-Valdés D^a, Jordi Calvo-Sanz D^{b,c}, Gerard Urrùtia^d, Pol Serra-Llobet D^a, Albert Pérez-Bellmunt D^e and Ana Germán-Romero D^a

^aPhysiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain; ^bPhysiotherapy Department Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain; ^cRehabilitation Department, Hospital Asepeyo Sant Cugat del Vallès, Barcelona, Spain; ^dCentro Cochrane Iberoamericano, Institut d'Investigació Biomèdica Sant Pau, CIBERESP, Barcelona, Spain; ^eBasic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain;

ABSTRACT

Objective: To assess the effectiveness of Extracorporeal Shock Wave Therapy (ESWT) to reduce lower limb spasticity in adult stroke survivors.

Data Sources: A systematic review of Medline/Pubmed, CENTRAL, CINAHL, PEDro database, REHABDATA, Scielo, Scopus, Web of Science, Trip Database, and Epistemonikos from 1980 to December 2018 was carried out.

Review Methods: The bibliography was screened to identify clinical trials (controlled and beforeafter) that used ESWT to reduce spasticity in stroke survivors. Two reviewers independently screened references, selected relevant studies, extracted data, and assessed risk of bias by PEDro scale. The primary outcome was spasticity.

Results: A total of 12 studies (278 participants) were included (5 randomized controlled trials, 1 controlled trial, and 6 before-after studies). A meta-analysis was performed by randomized controlled trials. A beneficial effect on spasticity was found. The mean difference (MD) was 0.58; 95% confidence interval (CI) 0.30 to 0.86 and also in subgroup analysis (short, medium, and long term). The MD for range of motion was 1.81; CI –0.20 to 3.82 and for lower limb function the standard mean difference (SMD) was 0.34; 95% CI –0.09 to 0.77. Sensitivity analysis demonstrated a better beneficial effect for myotendinous junction. MD was 1.5; 95% CI –2.44 to 5.44 at long-term (9 weeks).

Conclusion: The ESWT (radial/focused) would be a good non-invasive rehabilitation strategy in chronic stroke survivors to reduce lower limb spasticity, increase ankle range of motion, and improve lower limb function. It does not show any adverse events and it is a safe and effective method.

ARTICLE HISTORY

Received 18 February 2019 Accepted 3 August 2019

KEYWORDS

Stroke; hemiparesis; hemiplegia; extracorporeal shock wave therapy; ESWT; spasticity; hypertonia

Introduction

Stroke often affects sensory-motor networks and descending tracts, as reflected by several signs of upper motor neuron syndrome.¹ One symptom is post-stroke spasticity, usually accompanied by one or more signs such as loss of selective motor control, weakness, and dexterity, as well as slowed movements, lack of coordination, and spastic co-contractions. Spasticity is due to an abnormal processing of a normal input from muscle spindles in the spinal cord.² It is often defined by a velocity-dependent increase in muscle tone and a resistance to passive muscle stretch. It has neural (increased reflex activity) and non-neural (altered visco-elastic properties due to immobilization) components.^{3,4} The prevalence ranges from 25% to 43% at 6 months post-stroke.³

Chronic spasticity can decrease the number of sarcomeres. As a result, the proportion of connective tissue in the muscle and fasciae can increase.⁵ These subjects present fibrosis that have augmented passive muscle stiffness due to structural and

functional adaptations inside the muscle cells.⁶ Soft tissue changes may cause the pulling forces to be transmitted more readily to the muscle spindles, which can intensify sensory input thus increasing spasticity.⁷ It has a potential impact on lower limb function,⁸ which affects passive muscle stretch, range of motion,⁹ and motor unit recruitment during voluntary contraction. In the stance phase of gait, the deformity also produces an inadequate base of support, which is associated with balance impairments. This increases the risk of falls, reduces patient participation in daily activities, and decreases health-related quality of life.¹⁰

Spasticity management includes invasive and non-invasive approaches (functional neurorehabilitation modalities).¹¹ One of the non-invasive treatments is extracorporeal shockwave therapy (ESWT). It consists of an acoustic pulse, with a high peak pressure and a short life cycle.¹² There are two types of ESWT, focused and radial. Focused can be produced by electrohydraulic, electromagnetic, and piezoelectric shock

CONTACT Rosa Cabanas-Valdés 🖾 rosacabanas@uic.es 🗈 Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ytsr.

wave generators. Radial is produced by a pneumatic device located inside the generator.¹³

Basic research has demonstrated the effectiveness of ESWT for tendon and other musculoskeletal disorders.¹⁴ It seems that the sonic impulse of ESWT acts on muscle spasticity differently from normal vibratory stimulation.¹⁵ Sonic impulse, in addition to the vibratory stimulus, can induce non-enzymatic and enzymatic nitric oxide synthesis that is involved in neuromuscular junction formation, neurotransmission, synaptic plasticity,¹⁶ and its retention.¹⁷

Recent reviews have evaluated the effectiveness of ESWT on stroke survivors^{16,18,19}; however, there are methodological deficiencies. In previous reviews,^{16,19} effects of ESWT on spasticity were based specifically on Modified Ashworth Scale (MAS score). Other direct or indirect measures of spasticity were not taken into account, such as composite spasticity score, tibial Fmax/Mmax ratio, H-reflex latency, and H-reflex recovery curve.²⁰ In addition, there is disagreement between studies on what type and characteristics of the ESWT are the best for spastic muscle, including energy dosage, shock wave generating and directing methods, and use or absence of anesthesia. Nowadays, there is insufficient evidence to recommend ESWT for reducing spasticity in poststroke subjects. To date, except for botulin toxin on the upper limb, there are no scientific guidelines for the application of different therapies to improve spasticity.²¹ Therefore, the aim of this systematic review is to identify studies that used ESWT to reduce spasticity of adult stroke survivors. This review instead focuses specifically on the lower limb in order to identify the specific treatment parameters by means of optimal ESWT (dose) to reduce the consequences of spasticity in the clinical setting, as well as in the spasticity caused by a stroke (not by other neurological disorders).

Methods

An evidence-based systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)²² and the Cochrane Handbook for Systematic Reviews²³ guidelines. The protocol was published on the PROSPERO International prospective register of systematic reviews website (reference number: no. CRD42018083921).

The search strategy was formulated using a PICO framework. (P) Adult patients with lower limb spasticity poststroke, (I) receiving ESWT alone or with another physical approach, (C) compared with subjects receiving conventional physiotherapy, other approaches, sham approaches or none, (O) analyzed changes in spasticity compared with non-ESWT-treated subjects with or without follow-up. The studies were published in academic journals, dated from January 1980 to December 2018, treatment was applied to humans, and English, French, Italian, Portuguese, or Spanish languages were included. Comments, reviews, transverse studies, poster/oral communications, and practice guidelines were rejected.

Concerning the intervention, both kinds of ESWT (radial and focused) were included in this revision. Conventional physiotherapy is a set of techniques that are defined and implemented according to the practices of each rehabilitation center. We defined it as the treatment involving any of the following elements to reduce spasticity (stretching and range of motion exercises, orthosis, weight bearing and balancing exercise, gait-training exercises, walking, and functional training). The template for intervention description and the replication checklist was used for the intervention report.²⁴

The primary outcome of this review was spasticity, although additional measures were also taken that should be measured before and at any time following ESWT intervention. We grouped the outcome measures into three categories, classified by the time the ESWT intervention was finished: short-term (the same day of the last session), medium-term (less than 4 weeks after the last session) and long-term (more than 4 weeks after the last session).

A computerized search strategy was performed in the following databases: Medline/Pubmed, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database (PEDro), Scielo, Trip Database, Web of Science, SCOPUS, CINHAL, Rehabdata and Epistemonikos. In addition, a manual search was performed in Google Scholar (see Appendix).

Assessment of paper eligibility and data extraction were independently performed by two authors (AG and RC) and any disagreement was evaluated by a third author (JC). Refworks Proquest discharged duplicate articles, and the remaining studies were analyzed for its appropriateness. Selection was based first on title or abstract, and later on full text publications. They were thoroughly checked to confirm the selection criteria. The following data were extracted: (1) general characteristics of study design, (2) patient characteristics, (3) intervention features, targeted muscle, point of application, and ESWT parameters, (4) outcome measures and assessment. Furthermore, in studies where the information was provided conventional physical therapy intervention was also collected.

Risk of bias assessment of the studies was assessed by two authors (RC and PS) using the PEDro scale.²⁵ In case of doubt or disagreement, a discussion was held between three reviewers until a consensus was reached. The ultimate score was divided into three sections²⁶; high quality (score 6–10), fair quality (score 4–5), and poor quality (score \leq 3). Furthermore, a Funnel plot was used for assessing publication bias.

Treatment effect sizes were calculated using Revman 5.3^{23} software based on mean scores and standard deviations from the randomized studies. When variables were continuous and in the same units, a mean difference (MD) was used. A standardized MD was used if the same construct was measured using different instruments. A random-effects model to conduct meta-analyses and analyzed data were used. As studies were small in size, this mean change from baseline was used when available to allow for a more accurate comparison between control and intervention. The effect size was categorized as 0.2, 0.5, 0.8, and 1.3, considered as small, medium, large and very large, respectively.²⁷ Heterogeneity across studies was tested using the I₂ test, I₂ score >50% indicated significant heterogeneity. Missing data were first requested by contacting the corresponding author.

A sensitivity analysis was performed when it was possible. In this manner, subgroup analyses were performed in relation to: time of assessment (short, medium, and long term), point of ESWT application, and number of sessions.

Results

The PRISMA diagram (see Figure 1) summarizes the results of the scientific literature search. Finally 12 studies were selected: 5 randomized controlled trials Tirbisch *et al.*,2015; Taheri *et al.*,2017; Wu *et al.*,2018; Yoon *et al.*, 2017; Lee *et al.*, 2018,^{28–32} 1 controlled trial Sawan *et al.*, 2017,³³ and 6 (before-after) studies Rastgoo *et al.*, 2016, Moon *et al.*, 2013; Santamato *et al.*, 2014; Kim *et al.*, 2015; Randinmehr *et al.*, 2017, Sohn *et al.*, 2011.^{34–39} Table 1 provides an overview of the studies included and patient characteristics. Only two authors responded when contacted to get additional information (especially that necessary for the completion of the meta-analysis).

The total population studied included 278 patients, of which 93 individuals were female. Of those patients, 141 participants suffered an ischemic stroke and 71 hemorrhagic. Two studies did not report this information.^{31,38} The mean age of participants ranged from 44.8 to 66.9 years (10 healthy people were excluded³⁹), there were 118 patients with hemiparesis of the left side and 134 of the right. Several authors

did not reported it.^{29,31,33,36,39} Only two studies^{28,39} reported stroke area. According to Royal Dutch Society for Physical Therapy clinical practice guideline,⁴⁰ patients were in chronic phase (>6 months) in 10 studies, in subacute phase (<3 months)³⁵ in 1 study, and in late phase (between 3 and 6 months) in another study.²⁸

The mean PEDro score assessing risk of bias was 4.9 points from 10 (see Table 2), indicating a fair risk. Nevertheless, three studies were highlighted with 8 points. Funnel plot was symmetrical, so the risk of publication bias is low (see Figure 2). All studies excluded patients with fixed muscle contractures >4 MAS score,⁴¹ and included patients with muscles spasticity \geq 1. In relation to other criteria such as gait ability, botulinum toxin treatment, and antispastic medication there were differences between studies (see Table 3).

Relating to ESWT type, six studies used focused^{29,31,33,35,36,39} and five used radial^{28,32,34,37,38}; and Wu³⁰ compared both. Eight studies performed conventional physiotherapy in addition to ESWT^{28–33,35,37} (see Table 4). The parameters of ESTW intervention differed between studies. The frequency oscillated between 2 and 10 Hz, being 4/5 Hz the most used. Two studies^{33,39} did not report it. The pressure energy levels oscillate between 0.03 and 0.340 mJ/mm², which corresponds to a high-energy level according to the classification of Rompe.⁴² The number of shots ranged from 1.500 to 2.000, being 1500 shots the most used.^{29–31,33,35,36,39} Targeted muscle was triceps surae

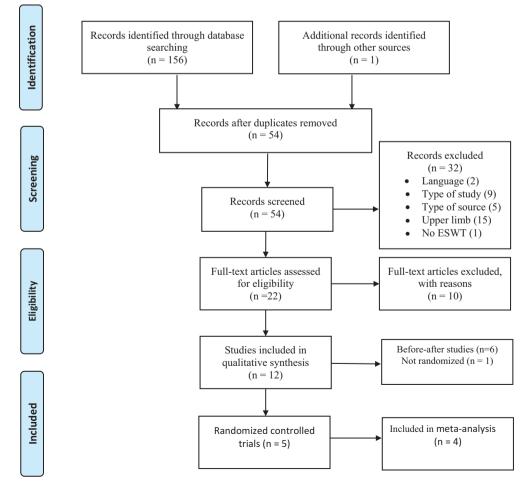


Figure 1. PRISMA diagram of the process used to identify studies.

t characteristics.
ien:
and pat
studies
selected
r of se
overview
General o
÷
Table

Study Type of stroke Intervention Type of stroke mean (SD) Time since onset, mean								Patient	Patient characteristics		
h et al., 2015 RCT 8 CG (4) CP 61.2 (11.12) 222 3/1 3.43 (1.63) months 3/1 et al., 2017 (Iran) (28) RCT 23 CG (12) CP 61.2 (11.12) 3.43 (1.63) months 3.11 et al., 2017 (Iran) (28) RCT 25 CG (12) CP 55.4 (1.9) 8/4 11/1 2.58 (9.9) months 3/1 ad., 2017 (Iran) (28) RCT 23 CG (12) CP 55.4 (1.3) 97.4 11/1 2.58 (9.9) months 3/1 ad., 2017 (Iran) (28) RCT 31 FESWT + CP 55.6 (1.13) 97.4 11/1 2.58 (9.9) months 97 ad., 2017 (Irane) (28) RCT 31 FESWT + CP 55.6 (1.13) FESWT + CP 55.6 (1.13) 97.7 10.05 55.7 (26.1) months 97 ad., 2017 (Korea) (30) RCT 44 CG (10) FESWT + CP 50.90 (8.81) 772 97.1 (9.7) 97.1 (9.7) 97.1 (9.7) ad., 2017 (Korea) (31) RCT 165 (0.12.2) 130.6 (8.9)	Study	Туре	z	Groups (n)	Intervention	Age (years), mean (SD)	Gender (male/ female)	Type of stroke (ischemic/ hemorrhagic)	Time since onset, mean (SD)	Affected side (right/left)	Affected area
RCT B CG (4) CP 61.2 (11.12) 2/2 3/1 3/3 (163) months 3/1 RCT 25 CG (12) CP 49.5 (8.74) 1/3 3/1 3/1 (11.2) 3/1 3/1 (11.2) 3/1 RCT 25 CG (12) CP 55.5 (11.6) 9/4 11/1 3.5 (2.6.1) months 9/1 RCT 31 FESWT 4CP 55.5 (11.6) 9/4 11/2 3.7 (1.6.1) months 7/8 RCT 31 FESWT 1(5) FESWT 4CP 56.5 (11.6) 9/4 11/2 3.7 (1.6.1) months 7/8 RCT 44 CG (18) CP + sham ESWT 59.5 (16.9) 16/2 Not reported 38.7 (3.0.2) months 7/8 RCT 18 EG (10) CP + sham ESWT 59.5 (16.9) 16/2 Not reported 38.7 (30.2) months 7/8 RCT 18 FG (10) FESWT MIT 14.07 50.3 (9.9) 9/4 11/2 34.7 (3.9) months 5/4 RCT 18 CG (9) CP	RCTs										
EG (4) $FEWT + CP$ 49.5 (8.74) 1/3 3/1 3.97 (0.83) months 3/1 RCT 25 CG (12) CP 54.9 (9.4) 8/4 11/1 25.8 (9.9) months 9/7 RCT 31 r5WT (16) FEWT + CP 59.6 (11.3) 9/4 11/1 25.8 (9.9) months 9/7 RCT 31 r5WT (15) FEWT + CP 59.6 (11.3) 9/4 11/1 25.8 (0.9) months 9/7 RCT 31 FEWT (16) FEWT + CP 59.6 (11.3) 9/7 10/6 53.7 (30.1) months 9/7 RCT 44 CG (18) CP + sham ESWT 59.5 (16.9) 16/2 Not reported 38.7 (30.2) months 7/8 RCT 18 FEWT M11 (13) FEWT M11 (13) FEWT M11 (13) 55.6 (10.1) 7/8 5/4 RCT 18 FEWT M1 (13) FEWT M1 (13) 5/6 (13.9) 10/6 39.7 (30.1) months 5/4 RCT 18 FEWT M1 (13) FEWT M1 (13) 5/6 (13.9) 10/6 10/6 </td <td>Tirbisch et al., 2015</td> <td>RCT</td> <td>8</td> <td>CG (4)</td> <td>CP</td> <td>61.2 (11.12)</td> <td>2/2</td> <td>3/1</td> <td>3.43 (1.63) months</td> <td>3/1</td> <td>3 Sylvian</td>	Tirbisch et al., 2015	RCT	8	CG (4)	CP	61.2 (11.12)	2/2	3/1	3.43 (1.63) months	3/1	3 Sylvian
	(France) (27)			EG (4)	reswt + CP	49.5 (8.74)	1/3	3/1	3.97 (0.83) months	3/1	1 Capsule-
NCI 25 GG (12) CP 54.9 (14) 84.4 11/1 25.8 (5.9) (190) 97.7 RCT 31 FESWT + CP 59.6 (11.6) 97.4 11/1 25.8 (3.9) months 97.7 RCT 31 FESWT + CP 59.6 (11.6) 97.4 11/1 25.8 (3.9) months 97.7 RCT 44 GG (18) CG (18) 97.7 10/6 55.7 (3.6.) months 78 RCT 44 GG (18) CG (18) 97.7 10/6 55.7 (3.6.) months 78 RCT 48 GG (19) CP + sham ESWT 44.11 (4.07) 90.7 10/6 55.7 (3.6.) months 78 RCT 18 GG (9) CP + sham ESWT 44.11 (4.07) 90.0 2/7 10.44 (9.11) months 5/4 RCT 18 GG (10) CP + sham ESWT 44.11 (4.07) 90.0 2/7 10.44 (9.11) months 5/4 RCT 18 GG (10) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months <td></td> <td></td> <td>1</td> <td></td> <td>ť</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>lenticulare</td>			1		ť					-	lenticulare
RCI 31 EG (13) FESWT + CP 56.5 (11.6) 9/4 11/2 33 (21.4) months 9/7 RCI 31 FESWT + CP 59.6 (11.3) 9/7 10/6 55.7 (26.1) months 7/8 RCI 44 CG (18) CP + sham ESWT + CP 59.6 (1.3) 9/7 10/6 55.7 (26.1) months 7/8 RCI 48 CG (18) CP + sham ESWT 59.5 (16.9) 16/2 Not reported 38.7 (30.2) months 7/8 RCI 18 ESWT 160 FESWT 76 59.6 (10.2) 16/2 Not reported 38.7 (30.2) months 7/8 RCI 18 EG (9) CP + sham ESWT 59.6 (10.7) 12/0 10.44 (9.1) months 5/4 RCI 18 EG (10) FESWT 25.8 (3.1) 7/2 4/5 12.80 (8.99) months 6/3 RCI EG (9) CP + ESWT 50.8 (8.1) 7/2 4/5 12.80 (9.9) months 6/3 RCI 18 FESWT 25.8 (3.1) 7/6 2/8 5/3 (2.3.0) mon	laheri <i>et al.</i> , 2017 (Iran) (28)	KCI	25	CG (12)	Ĵ.	54.9 (9.4)	8/4	1/11	25.8 (9.9) months	not reported	not reported
RCT 31 rESWT (16) rESWT + CP 59.6 (11.3) 9/7 10/6 55.7 (26.1) months 9/7 RCT 44 rESWT [13) rESWT + CP 60.3 (9.9) 9/6 10/5 53.2 (26.1) months 7/8 RCT 44 rESWT [13) rESWT [14) rESWT [13) rESWT [14) 7/8 7/8 RCT 18 CG (13) CP + sham ESWT 50.3 (16.9) 15/2 10/4 51.1 months 7/8 RCT 18 CG (9) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 5/4 RCT 18 CG (9) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 6/3 RCT 18 CG (10) FESWT 50.3 (11.3) 6/4 2/8 5/4 6/3 rial (before-after) 20 CG (10) FESWT 2/83 (11.3) 6/4 2/8 5/4 (23.9) 7/1 6/4 2/8 5/4 2/3 5/4 2/3 5/4				EG (13)	feswt + CP	56.5 (11.6)	9/4	11/2	33 (21.4) months		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wu <i>et al.</i> , 2017 (Taiwan) (29)	RCT	31	rESWT (16)	rESWT + CP	59.6 (11.3)	2/6	10/6	55.7 (26.1) months	2/6	not reported
RCT 44 CG (18) CP + sham ESWT 59.5 (16.9) 16/2 Not reported 38.7 (30.2) months not reported RCT 18 CG (13) FESWT belly (13) FESWT belly + CP 61.0 (12.2) 13/0 99.1 (85.1) months 6/3 RCT 18 CG (9) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 6/3 RCT 18 CG (9) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 6/3 RCT EG (10) FESWT 50.8 (8.1) 7/2 4/5 12.89 (8.99) months 6/3 rial (before-after) 20 CG (10)* FESWT 25.8 (3.1) 4/6 -				feswt (15)	feswt + CP	60.3 (9.9)	9/6	10/5	53.2 (26.7) months	7/8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yoon <i>et al.</i> , 2017 (Korea) (30)	RCT	44	CG (18)	CP + sham ESWT	59.5 (16.9)	16/2	Not reported	38.7 (30.2) months	not reported	not reported
Z018 (Korea) (31) RCT Its CG (9) CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 5/4 Z011 (Korea) (38) trial (before-after) 20 CG (10)* CP + sham ESWT 44.11 (4.07) 9/0 2/7 10.44 (9.11) months 5/4 , 2011 (Korea) (38) trial (before-after) 20 CG (10)* FESWT 50.89 (8.81) 7/2 4/5 12.89 (8.99) months 6/3 , 2011 (Korea) (38) trial (before-after) 20 CG (10)* FESWT 55.8 (3.1) 4/6 -				fESWT belly (13)	fESWT belly + CP	61.0 (12.2)	13/0		99.1 (85.1) months		
2018 (Korea) (31) RCT 18 CG (9) CP + sham ESWT 44.11 (4.07) 9/0 $2/7$ 10.44 (9.11) months $5/4$ 2011 (Korea) (38) trial (before-after) 20 CG (10)* fESWT 50.89 (8.81) 7/2 4/5 12.89 (8.99) months $6/3$, 2011 (Korea) (38) trial (before-after) 20 CG (10)* fESWT 25.8 (3.1) $4/6$ $ -$, 2013 (Korea) (38) trial (before-after) 20 CG (10)* fESWT $25.8 (3.1)$ $4/6$ $ -$				feswt MTJ (13)	fESWT junction + CP	66.9 (4.9)	13/0		51.1 (36.0) months		
EG (9) $CP + ESWT$ $50.89 (8.81)$ $7/2$ $4/5$ $12.89 (8.99) months$ $6/3$, 2011 (Korea) (38)trial (before-after)20 $CG (10)^*$ $FESWT$ $25.8 (3.1)$ $4/6$ $ -$, 2013 (Korea) (34)trial (before-after)20 $CG (10)^*$ $FESWT$ $25.8 (3.1)$ $4/6$ $ -$, 2013 (Korea) (34)trial (before-after)30EG (30) $FESWT + CP$ $52.6 (14.9)$ $17/13$ $16/14$ $2.7 (1.6)$ months $12/18$ a d, 2014 (Italy) (35)trial (before-after)30EG (30) $FESWT + CP$ $52.6 (10.8)$ $17/13$ $16/14$ $2.7 (1.6)$ months $12/18$ a d, 2016 (Inan) (33)trial (before-after)10EG (10) $FESWT + CP$ $52.1 (11.1)$ $14/3$ $12/11$ $24.9 (11.9)$ months $12/18$ a d, 2016 (Inan) (33)trial (before-after)10EG (10) $FESWT + CP$ $52.1 (11.1)$ $14/3$ $12/5$ $5/5$ a d, 2017 (Iran) (33)trial (before-after)12EG (12) $FESWT$ $59 (13)$ $7/5$ Not reported 4.13 d, 2017 (Egypt) (32)controlled trial40CG (20)CP + sham ESWT $4.8 (5.9)$ $22/18$ $40/0$ Range 6-18 months $not reportedd, 2017 (Egypt) (32)controlled trial40CG (20)CP + sham ESWT50.6 (6.7)22/1840/0Range 6-18 monthsnot reported$	Lee <i>et al.</i> , 2018 (Korea) (31)	RCT	18	CG (9)	CP + sham ESWT	44.11 (4.07)	0/6	2/7	10.44 (9.11) months	5/4	not reported
 , 2011 (Korea) (38) trial (before-after) 20 CG (10)* fESWT 25.8 (3.1) 4/6 - 6/4 2/8 53.4 (23.9) months Not reported 44.9 (11.3) 6/4 2/8 53.4 (23.9) months Not reported 41.2013 (Korea) (34) trial (before-after) 30 EG (30) 65WT + CP 52.6 (14.9) 17/13 16/14 27. (1.6) months 12/18 12/19 12/11 14, 3 12/15 17.60 (2.36) months 6/1 2017 (Iran) (33) trial (before-after) 12 EG (12) ESWT CP + sham ESWT 50, 6(.7) 2018 2018 2018 2019 Range 6-18 months 10 reported 10 reported 10 reported 11.1 11.1 14.3 12/5 17.60 (2.36) months 5/5 17.60 (2.36) months 17.13 17.11 14.3 17.11				EG (9)	CP + ESWT	50.89 (8.81)	7/2	4/5	12.89 (8.99) months	6/3	
trial (before-after)20CG (10)* $fESWT$ 25.8 (3.1) $4/6$ EG (10) $fESWT$ 25.8 (3.1) $6/4$ $2/8$ 53.4 (23.9) monthsNot reportedtrial (before-after)30EG (30) $fESWT$ 4.9 (11.3) $6/4$ $2/8$ 53.4 (23.9) monthsNot reportedtrial (before-after)30EG (30) $fESWT$ FC 52.6 (10.8) $17/13$ $16/14$ 2.7 (1.6) months $12/18$ trial (before-after)10EG (23) $fESWT$ 57.6 (10.8) $15/8$ $12/11$ 24.9 (11.9) months $5/5$ trial (before-after)17EG (10) $fESWT$ 52.1 (11.1) $14/3$ $12/11$ 24.9 (11.9) months $7/13$ trial (before-after)17EG (12) $fESWT$ 52.1 (11.1) $14/3$ $12/13$ $4/13$ trial (before-after)17EG (12) $fESWT$ 59 (13) $7/5$ $7/5$ $7/5$ Controlled trial40CG (20)CP + sham ESWT 50.6 (5.7) $22/18$ $40/0$ Range 6-18 monthsnot reported(not randomized)EG (20)CP + ESWT 50.6 (5.7) $22/18$ $40/0$ Range 6-18 monthsnot reported	Non RCTs										
EG (10) $fESWT$ 44.9 (11.3) $6/4$ $2/8$ 53.4 (23.9) monthsNot reportedtrial (before-after)30EG (30) $fESWT + CP$ 52.6 (14.9) $17/13$ $16/14$ 2.7 (1.6) months $12/18$ trial (before-after)23EG (23) $fESWT + CP$ 57.6 (10.8) $15/8$ $12/11$ 24.9 (11.9) months $12/18$ trial (before-after)10EG (10) $fESWT + CP$ 64.10 (4.01) $5/5$ $5/5$ 17.60 (2.36) months $5/5$ trial (before-after)17EG (12) $fESWT$ $52.11(11.1)$ $14/3$ $12/5$ $17.16.9$) months $4/13$ trial (before-after)17EG (12) $fESWT$ $52.11(11.1)$ $14/3$ $12/5$ 17.60 (2.36) months $5/5$ trial (before-after)12EG (12) $fESWT$ 59 (13) $7/5$ $7/5$ $7/3$ Controlled trial40CG (20)CP + sham ESWT 40.8 (5.9) $22/18$ $40/0$ Range 6-18 monthsnot reported(not randomized)EG (20)CP + ESWT 50.6 (6.7) 20.6 months $5/7$	Sohn <i>et al.</i> , 2011 (Korea) (38)	trial (before-after)	20	CG (10)*	feswt	25.8 (3.1)	4/6	I	I	I	
trial (before-after)30EG (30)fESWT + CP52.6 (14.9)17/1316/142.7 (1.6) months12/18trial (before-after)23EG (23)fESWT57.6 (10.8)15/812/1124.9 (11.9)monthsnot reportedtrial (before-after)10EG (10)FESWT57.6 (10.8)15/812/1124.9 (11.9)monthsnot reportedtrial (before-after)17EG (10)FESWT57.1 (11.1)14/317.60 (2.36)months5/5trial (before-after)12EG (12)FESWT52.1 (11.1)14/312/517.1 (6.9)months4/13trial (before-after)12EG (12)FESWT52.1 (11.1)14/312/517.1 (6.9)months4/13trial (before-after)12EG (12)FESWT52.1 (11.1)14/312/517.1 (6.9)months5/7Controlled trial40CG (20)CP + sham ESWT50.6 (5.7)22/1840/0Range 6-18monthsnot reported(not randomized)EG (20)CP + ESWT50.6 (6.7)22/1840/0Range 6-18monthsnot reported				EG (10)	feswT	44.9 (11.3)	6/4	2/8	53.4 (23.9) months	Not reported	2 cortical, 3
trial (before-after)30EG (30)fESWT + CP52.6 (14.9) $17/13$ $16/14$ 2.7 (1.6) months $12/18$ trial (before-after)23EG (23)FESWT 57.6 (10.8) $15/8$ $12/11$ 24.9 (11.9)months 10.7 reportedtrial (before-after)10EG (10)FESWT 57.6 (10.8) $5/5$ $5/5$ 17.60 (2.36)months $5/5$ trial (before-after)17EG (12)FESWT $52.1 (11.1)$ $14/3$ $12/5$ 17.60 (2.36)months $4/13$ trial (before-after)12EG (12)FESWT $59.(13)$ $7/5$ Not reported 4.13 $4/13$ controlled trial40CG (20)CP + sham ESWT $48.6.9$) $22/18$ $40/0$ Range 6-18 months 577 (not randomized)EG (20)CP + sham ESWT $50.6(6.7)$ $50.6(6.7)$ 66.7) $22/18$ $40/0$ Range 6-18 monthsnot reported											thalamic,
trial (before-after)30EG (30)fESWT + CP52.6 (14.9)17/1316/142.7 (1.6) months12/18trial (before-after)23EG (23)FESWT57.6 (10.8)15/812/1124.9 (11.9)monthsnot reportedtrial (before-after)10EG (10)rESWT + CP64.10 (4.01)5/55/517.60 (2.36)months5/5trial (before-after)17EG (10)rESWT52.1 (11.1)14/312/517.1 (6.9)months4/13trial (before-after)12EG (12)rESWT59 (13)7/5Not reported34.3 (20.6)months5/7trial (before-after)12EG (20)CP + sham ESWT44.8 (5.9)22/1840/0Range 6-18months5/7(not randomized)EG (20)CP + ESWT50.6 (6.7)22/1840/0Range 6-18monthsnot reported											5 basal ganglia
trial (before-after) 23 EG (23) FESWT 57.6 (10.8) 15/8 12/11 24.9 (11.9) months not reported trial (before-after) 10 EG (10) rESWT CP.10 64.10 (4.01) 5/5 5/5 17.60 (2.36) months 5/5 5/5 17.60 (2.36) months 5/5 17.10 17.10 14/13 12/5 17.10 17.10 4/13 17.10 4/13 17.10	Moon <i>et al.</i> , 2013 (Korea) (34)	trial (before-after)	30	EG (30)	feswt + CP	52.6 (14.9)	17/13	16/14	2.7 (1.6) months	12/18	not reported
trial (before-after) 10 EG (10) rESWT + CP 64.10 (4.01) 5/5 5/5 17.60 (2.36) months 5/5 33 trial (before-after) 17 EG (17) rESWT 52.1 (11.1) 14/3 12/5 17.1 (6.9) months 4/13 1/3 (37) trial (before-after) 12 EG (12) rESWT 59 (13) 7/5 Not reported 34.3 (20.6) months 5/7 1 (32) Controlled trial 40 CG (20) CP + sham ESWT 44.8 (5.9) 22/18 40/0 Range 6-18 months not reported 1 (not randomized) EG (20) CP + ESWT 50.6 (6.7) 22/18 40/0 Range 6-18 months not reported 1	Santamato et al., 2014 (Italy) (35)		23	EG (23)	feswt	57.6 (10.8)	15/8	12/11	24.9 (11.9) months	not reported	not reported
trial (before-after) 17 EG (17) rESWT 52.1 (11.1) 14/3 12/5 17.1 (6.9) months 4/13 1 trial (before-after) 12 EG (12) rESWT 59 (13) 7/5 Not reported 34.3 (20.6) months 5/7 1 Controlled trial 40 CG (20) CP + sham ESWT 44.8 (5.9) 22/18 40/0 Range 6–18 months not reported 1 (not randomized) EG (20) CP + ESWT 50.6 (6.7) 22/18 40/0 Range 6–18 months not reported 1	Kim <i>et al.</i> , 2015 (Korea) (36)	trial (before-after)	10	EG (10)	rESWT + CP	64.10 (4.01)	5/5	5/5	17.60 (2.36) months	5/5	not reported
trial (before-after) 12 EG (12) rESWT 59 (13) 7/5 Not reported 34.3 (20.6) months 5/7 1 Controlled trial 40 CG (20) CP + sham ESWT 44.8 (5.9) 22/18 40/0 Range 6–18 months not reported 1 (not randomized) EG (20) CP + ESWT 50.6 (6.7) 22/18 40/0 Range 6–18 months not reported 1	Ratsgoo <i>et al.</i> , 2016 (Iran) (33)	trial (before-after)	17	EG (17)	rESWT	52.1 (11.1)	14/3	12/5	17.1 (6.9) months	4/13	not reported
Controlled trial 40 CG (20) CP + sham ESWT 44.8 (5.9) 22/18 40/0 Range 6–18 months not reported (not randomized) EG (20) CP + ESWT 50.6 (6.7)	Radinmehr <i>et al.</i> , 2017 (Iran) (37)		12	EG (12)	rESWT	59 (13)	7/5	Not reported	34.3 (20.6) months	5/7	not reported
(not randomized) EG (20) CP + ESWT	Sawan <i>et al.</i> , 2017 (Egypt) (32)	Controlled trial	40	CG (20)	CP + sham ESWT	44.8 (5.9)	22/18	40/0	Range 6–18 months	not reported	not reported
		(not randomized)		EG (20)	CP + ESWT	50.6 (6.7)					

exiracorporeal quidi 'INCJI 5 2 2 3 ruerapy; mus, nai pnysical unerapy; LP, col υ Ξ g 3 CG, control group; EG, experimental group; FESWT, foc shockwave therapy; SD, standard deviation. *Healthy participants.

4 😧 R. CABANAS-VALDÉS ET AL.

Table 2. Risk of bias assessment of selected studies by PEDro scale (25).

		Moon	Santamato	Tirbish	Kim	Ratsgoo	Taheri	Wu	Yoon	Radinmehr	Sawan	Lee
	Sohn <i>et al.,</i>	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,	et al.,
ltems	2011	2013	2014	2015	2015	2016	2017	2017	2017	2017	2017	2018
Eligibility criteria were specified ^a	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Random allocation	no	no	no	yes	no	no	yes	yes	yes	yes	no	yes
Concealed allocation	no	no	no	yes	no	no	yes	yes	no	no	no	yes
Baseline comparability	no	no	no	yes	no	no	yes	yes	yes	yes	yes	yes
Blind subjects	no	no	no	no	no	no	no	yes	no	no	no	yes
Blind Therapists	no	no	no	no	no	no	no	no	no	no	no	no
Blind assessors	no	no	no	yes	no	no	no	yes	no	yes	no	yes
Adequate follow-up ^b	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes
Intention- to treat analysis	yes	yes	no	yes	yes	yes	no	no	no	no	yes	no
Between groups comparisons	no	no	no	yes	no	no	yes	yes	yes	yes	yes	yes
Point estimates and variability	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
PEDro score	3	3	3	8	3	3	6	8	5	5	5	8

^a This criterion influences external validity, but not the internal or statistical validity of the trial. This item is not used to calculate the PEDro score

^b Defined an adequate follow-up as less than 15% drop-outs. The PEDro score mean is 4.9 points

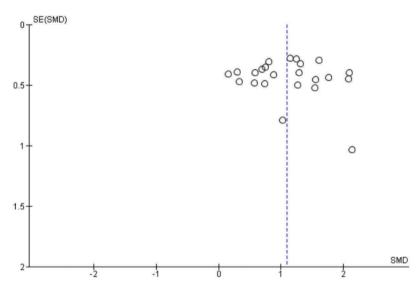


Figure 2. Funnel plot of all studies.

for all studies except one³¹ in which the semitendinosus muscle was targeted. With reference to application point, seven studies applied ESWT on muscle belly, three of them applied on the myotendinous junction,^{28,29,35} Yoon³¹ compared both, and one applied³⁷ on the plantar fascia. Number of ESWT sessions oscillate between one single session or \geq 3sessions. Frequency was principally 1 session/week, and duration of treatment ranged from 1 to 3 weeks, with only one study that lasted 6 weeks. The total number of sessions of ESWT was wide, ranging from 1 to 9 (see Table 5).

The primary outcome was spasticity. It was assessed clinically and electro-physiologically. The secondary outcomes were related to muscle architecture, range of motion, gait (ability/ speed), clonus, pain, and lower limb functionality. Considering evaluation-time, it ranged from immediately or one hour after last session^{28,29,32,36,38,39} to 6 months (see Table 6).

In relation to clinical assessment of spasticity, 10 studies used MAS,⁴³ three studies used Tardieu Scale,⁴⁴ and others recorded self-reported spasticity by the Visual Analogue Scale (see Table 7). Four studies measured spasticity electrophysiological by H-reflex

latency⁴⁵ and their parameters of H_{max}/M_{max} ratio (0.5–1 ms). The amplitude of the H-reflex indicates the degree of excitation and inhibition of the spinal cord motor neurons.⁴⁶ H-reflex latency is usually decreased and H_{max}/M_{max} ratio is increased⁴⁷ in patients with spasticity. It was obtained by stimulating the tibial nerve on popliteal fossa eliciting a reflex response in the triceps surae muscle and recording the resulting reflex compound muscle-action potential using an electromyography electrode (see Table 8).

Range of motion was measured in eight studies^{28–30,33–36,38} by a goniometer (digital or manually) although there were differences in the measures reported in relation to: active/passive movement, total/dorsiflexion range, and the knee position as it influences soleus or gastrocnemius extensibility (see Table 9). Peak torques and torque threshold angles were measured by dynamometry in two studies.^{35,38} In relation to muscle architecture, such as fiber and fascicle length, perimeters, and fiber angles, three studies^{32,34,36} assessed them mainly by ultrasonography (echography). This method uses high-frequency sound waves to image internal body structures or objects, and currents

Table 3. Inclusion criteria.

		Inclusion c	riteria
Study	Stroke phase	Clinical	Other criteria
RCTs			
Tirbisch et al., 2015	Subacute/late	Ankle plantar flexor muscles spasticity	≥18 years
(France)	(≤6 months)	$MAS \ge 1+$	
Taheri <i>et al.</i> , 2017	Chronic	Ankle plantar flexor muscles spasticity	Ability to walk 10 m
(Iran)	(> 6 months)	MAS >1+	
Wu et al., 2017	Chronic	Ankle plantar flexor muscles spasticity	≥18 years
(Taiwan)	(> 6 months)	MAS >1+	ability to walk alone, with or without an orthosis
Yoon <i>et al.,</i> 2017	Chronic	Semitendinous muscle spasticity	-
(Korea)	(> 6 months)	MAS > 1+	
Lee <i>et al.</i> , 2018	$(\geq 3 \text{ months})$	Ankle plantar flexor muscle spasticity	-
(Korea)		MAS > 1	
Non RCTs			
Sohn <i>et al.,</i> 2011	Chronic	Ankle plantar flexor muscles spasticity	-
(Korea)	(> 6 months)	MAS >1	
Moon <i>et al.,</i> 2013	Subacute/late	Ankle plantar flexor muscles spasticity	18–80 years' old
(Korea)	(≤6 months)	MAS >1+	stroke at least one month prior to the study
Santamato <i>et al.</i> , 2014	Chronic	Ankle plantar flexor muscles spasticity	> 18 years
(Italy)	(> 6 months)	MAS >1	
Kim et al., 2015	Chronic	Ankle plantar flexor muscles spasticity	Ability to walk independently
(Korea)	(> 6 months to 2 years)	MAS ≥1	plantar fasciitis (ultrasound plantar fascia thickness > 4 mm from the standard point of the calcaneus rim)
Ratsgoo <i>et al.</i> , 2016	Chronic	Ankle plantar flexor muscles spasticity	≥ 18 years
(Iran)	(> 6 months)	$MMAS \ge 1$	ability to walk independently (with or without walking aids)
Radinmehr et al., 2017	(> 1 month)	Ankle plantar flexor muscles spasticity	Ability to walk independently
(Iran)		MMAS ≥1	taking no antispastic medication
Sawan <i>et al.</i> , 2017	Chronic	Ankle plantar flexor muscles spasticity	Medically and physiologically stable
(Egypt)	(> 6 months)	MAS 1–2	

MAS, Modified Ashworth Scale; RCTs, randomized controlled trials.

that are underwater. Other studies also measured foot contact area³⁰ and tension of the medialis gastrocnemius,³⁷ evaluated by a myotonometer⁴⁸ (see Table 10).

Motor function of lower limb was measured in three studies. Two of them^{32,35} were evaluated by the Fugl-Meyer Assessment Scale (lower-limb section),⁴⁹ and other one²⁹ by the Lower Extremity Functional Scale.⁵⁰ Five studies assessed gait by different tools, two of them^{30,33} used 10-m walk test,⁵¹ one²⁹ used 3-m walk test,⁵² one used³⁷ the Functional Gait Assessment,⁵³ and another one³⁴ by the Timed Up and Go Test.⁵⁴ Furthermore, pain and adverse effects were assessed in three studies by the visual analogue scale⁵⁵ (see Table 11). Regarding clonus, only two studies assessed pain^{29,37} and five studies reported on possible adverse effects^{28,30,36,38,39} (see Tables 13 and 14).

Effects of extracorporeal shock waves therapy (ESWT)

Concerning the effect on spasticity, a first forest plot comparing before and after ESWT was possible for all studies, showing a positive effect that favors ESWT intervention (see Figure 3). Secondly, a comparison was performed between ESWT plus conventional physiotherapy (CP) versus CP alone by spasticity (MAS) in four randomized studies^{28,29,31,32} (see Figure 4), favoring the addition of ESWT to CP to reduce MAS score. The sham performed in two of these studies was not taken into account since it was shown that the placebo in ESWT does not seem to have any effect.³⁵ The MD by shortterm assessment was 0.48; 95% confidence interval (CI) 0.10 to 0.85; by medium-term was MD 0.77, 95% CI 0.18 to 1.36 and by long term MD 0.66, 95% CI 0.06 to 1.08 to 1.26. The total MD effect was 0.58, 95% CI 0.30 to 0.86. There were statistically significant differences for the H-reflex latency (immediate evaluation) by Randimehr³⁸ and H_{max} M_{max} ratio by Sawan.³³ There were statistically significant differences for ultrasonographic evaluation in two studies.^{32,36}

Regarding range of motion, five studies had significant differences favoring ESWT. Three studies^{28,29,32} were meta-analyzed (see Figure 5) and had positive effects at short, medium and long term. Wu³⁰ compared radial vs focused ESWT with significant differences favoring radial ESWT for this variable.

Three studies evaluated the lower limb function, and two of them^{29,32} were meta-analyzed (see Figure 6) showing a greater beneficial effect for ESWT. Six studies evaluated gait (ability/ speed), but a meta-analysis was not possible although in five of them ESWT had positive effects.^{29,33,34,37} Two sensitivity analyses were carried out for number of ESWT sessions (see Figure 7) and application point of ESWT (see Figure 8).

Peak eccentric torque and torque threshold angle, were analyzed by Moon³⁵ at the velocities of 60, 180, and 240°/s, and they were better immediately after ESWT treatment.

Discussion

The evidence base for extracorporeal shock wave therapy in stroke survivors is continuing to grow and would be another way to reduce spasticity. Specific aspects, however, are still largely under-explored and little is known about the delivery of shock wave interventions. For this reason, 7 nonrandomized studies were included from 12 studies that passed the filtering criteria of this review. This gives a more global and

Table 4. Interventions.

		Comparison			
		EXPERIMENTAL GROUP	Conventional Physical Therapy		Pharmacological Therapy
Tirbisch <i>et al.</i> , 2015 C	ð	rESWT +CP	Techniques of verticalization, active movements of neurodevelopmental type, stretching and posture techniques and cryotherapy (1 h/dav. 5 davc/week.3	Yes/unchanged	It was an exclusion criteria a change in anti-spastic drug dose or treatment
Taheri et al, 2017 C	СР	fESWT+ CP	eeks)	Yes	Oral antispastic medication: 2 mg/day of tizanidine hydrochloride during 4 days and 4 mg/day until the
Wu <i>et al.</i> , 2017 rf	rESWT + CP	fESWT + CP		Yes/unchanged	end of treatment Regimens and dosages of anti-spasticity medication were not adjusted and remained unchanged
Yoon et al., 2017 C	CP + sham ESWT	fESWT belly + CP fESWT MTJ+ CP	participation to the end of the follow-up period Physical therapy for spasticity received by the patients was noted and the notes were mitrained throuchout the study	Yes/unchanged	Anti-spasticity medication was noted and the notes were maintained throughout the study.
Lee <i>et al.</i> , 2018 C	CP + sham ESWT	rESWT + CP	n exercises	Yes/unchanged	Antispastic pharmacological therapy did not change the dose during study
Non RCTs Sohn <i>et a</i> l,2011 fE	ESWT (healthy adults)	fESWT (healthy adults) fESWT (stroke patients)	Νο	Yes/unchanged	Antispastic pharmacological therapy did not change the dose during study
Moon <i>et al</i> , 2013 no Santamato <i>et al</i> , 2014 no	6 6	fESWT + CP fESWT	ROM exercises, stretching and physical therapy No physiotherapy treatment was performed after ESWT	Yes/unchanged No	Medication for spasticity was not changed Exclusion criteria was the use medications that could have an impact on study findings (ex. previous botulinum toxin injection into the affected leg muscles or any intensive rehabilitative treatment in the 5 months before recruitment or treatment with GABAergic medications, benzodiazepines, or muscle
Kim <i>et al.</i> , 2015 n	оц	rESWT	Stretching exercises of the plantar fascia and Achilles tendon were executed for 6 months starting from the last day of ESWT intervention	Not reported	Not reported
Ratsgoo <i>et al.</i> , 2016 n	ou	rESWT	No	No	It was an exclusion criteria the use of anti-spastic drugs, or local injection of botulinum toxin type A in the nest 3 months.
Radinmehr <i>et al.,</i> N 2016	No	rESWT	No	No	It was an inclusion criteria not to take antispastic medication
t al., 2017	CP + sham ESWT	fESWT + CP	Ankle-foot orthosis, stretching, ROM, weight bearing and balancing exercises, gait training exercise walking, and functional training (1 h/day; 3 days/week; 6 weeks)	Not reported	Not reported

	··	lype or ESW		raran	Parameters of ESW intervention	u	Ψ	Application	Period of ESW treatment
Study	Generator head	Source	Manufacturer	Number of pulses or shots/muscle	EFD or Pressure	Frequency (Hz)	Involved muscles	Point of application	no. sessions (sessions/week; weeks)
RCTs									
Tirbisch <i>et al.</i> , 2015	Radial	Pneumatic	Swiss Dolor Clast (EMS. Switzerland)	2000	0,03 mJ/mm2 2.5 bars	10 Hz	J	Myotendinous junction	nine sessions (three sessions/week: 3 weeks)
Taheri <i>et al.</i>	Focused	EM	Dornier AR2 machine	1500	0.10 mJ/mm ²	4 Hz	BM	Mvotendinous iunction	Three sessions
2017			(Dornier MedTech GmbH, Germany)				FG		(1 session/week; 3 weeks)
Wu <i>et al.</i> , 2017	Focused	EM	Duolith SD1 (Storz	1500	0,10 mJ/mm ²	5 Hz	ט	Muscle belly	Three sessions
	Radial	Pneumatic	Medical, Switzerland)		2,0 bar		S		(1 session/week; 3 weeks)
Yoon <i>et al.</i> , 2017	Focused	EM	Dornier Aries; (Dornier MedTech. Germanv)	1500	0,0–68-0,093 mJ/mm ²	5 Hz	ST	Muscle belly Mvotendinous iunction	Three sessions (1 session/week: 3 weeks)
Lee <i>et al.</i> , 2018	Radial	Pneumatic	Dornier Aries; (Dornier MedTech, Germany)	2000	0.1 mJ/mm ²	4 Hz	ЫM	Not reported	1 session
Non RCTs									
Sohn <i>et al.</i> , 2011	Focused	EH	HMC EVOTRON (SwiTech, Switzerland)	1500	0.1 mJ/mm2	Not reported	ВМ	Muscle belly	1 session
Moon <i>et al.</i> ,	Focused	PE	PiezoWave (Richard Wolf	1500	0.089 mJ/mm ²	4 Hz	9 U	Myotendinous junction	3 sessions
2013		i	GmbH, Germany)				בפ	:	(I session/week; 3 weeks)
Santamato <i>et al.</i> , 2014	Focused	H	Evolron RFL03000 (Sanuwave AG, Switzerland)	1500	0.10 mJ/mm ²	2 Hz	s مو	Muscle belly	1 session
Kim <i>et al.</i> , 2015	Radial	Pneumatic	Shock Master 500 (APSUN Inc., Gymna Uniphy, Belgium)	1500	0,089 mJ/mm ²	4 Hz	ΡF	Not reported	3 sessions (1 session/week; 3 weeks)
Ratsgoo <i>et al.</i> , 2016	Radial	Pneumatic	(BTL Industries Ltd, United Kingdom)	2000	1,5 bars	5 Hz	MG S AT	Muscle belly	1 session
Radinmehr <i>et al.</i> , 2016	Radial	Pneumatic	3n Plus Version 2.0 (Zimmer Medizin System, Germany)	2000	0,340 mJ/mm ² 60 mJ (1 bar)	5 Hz	U	Muscle belly	1 session
Sawan <i>et al.</i> , 2017	Focused	not reported	Not reported	1500	Not reported	Not reported	MG	Muscle belly	6 sessions (1 session/week; 6 weeks)

Table 5. Extracorporeal shock wave therapy (ESWT) settings.

8 🛞 R. CABANAS-VALDÉS ET AL.

Table 6. Assessment characteristics.	acteristics.			
			Evaluation	
Study	Outcome	Tool	Variables	Period
RCTs Tirbisch et al 2015	Snasticity	SAM	MAS score for colous and for rastrochomius	T0 haseline
	Bande of motion	Tardieu Scale	Mind score for soleus and for gastrochemius Y andle	T, (after session 1)
			X score	T_2 (end of treatment/week 3)
			pROM	
Thomas to to the T		300	extensibility MAC cross for controction	F
1 aneri <i>el al., 2</i> 017		2002 2002		10 T (after consists 1/
	Palli Dears of motion			T (and session 1/week 1)
				T (0
		CIVILUS SCARE	CIDITUS SCUTE	13 (3 weeks post-rieguitetit)
	dalt ability Lower limb motor function	J-TIT WAIK LEST	1 III WAIK JUNALOUT (5) I FEC indev	
Wii et al 2017	Cover IIIIID IIIOCUI IMIICCIUII Spacticity		MAS score for distrochemius	7
Ma ct al., 2017	phasucuty	Trivian Scale	Tardiau andla	10 T. (1 week nost-treatment)
	Pance of motion	laiureu ocare Hand-hald aoniomatar		T (1 week post-treatment)
	Dynamic foot contact area	Tekscan platform (Boston, USA)	Mean dynamic nlantar contact area (cm ²)	T ₂ (8 weeks post-reaution)
	Gait ability	10-m walk test	Gait speed (m/s)	
Yoon <i>et al.</i> , 2017	Spasticity	MAS	MAS grade or score	To
		Modified Tardieu Scale	Modified Tardieu Score	T, (after session 1/week 1)
				T ₂ (after session 2/week 2)
				T_{3} (end of treatment/week 3)
Lee <i>et al.</i> , 2018	Spasticity	MAS	MAS score	T_0T_1 (30 min after single session)
	Range of motion	Goniometer	pROM	T_2 (1 week post-treatment)
	Lower limb motor function	FMA scale	FMA scale: lower limb section	T ₃ (4 weeks post-treatment)
	Muscle architecture	Ultrasonographic measurement	ATL	
			MFL MT	
			PA	
Non RCTs				
Sohn <i>et al.</i> , 2011	Electrophysiological effects	Medelec Synergy (Viasys healthcare, USA)	F-wave min. Latency (ms)H-reflex latency (ms)	To
			H-M ratioTibial nerve conduction velocity (m/s)	T ₁ (immediately after single session)
			CMAP latency (ms)	
			UNAP amplitude (mv)	
	pain Dain	2010		
Mccn of al 3013	Constinity			F
	Clonus	Chanis scale		10 T. cham
	Rance of motion	Goniometer	BOM	T_ (and of treatment /week 3)
	Biomechanical effects	Isokinetic dynamometerBiodex system 4(Biodex	PET (Nm)TTAs at 60. 180. and 240°/s	T ₃ (1 week post-treatment)
		Medical Šystem, USA)	-	T ₄ (4 weeks post-treatment)
	Motor function	FMA scale	FMA lower limb	
Santamato <i>et al.</i> ,	Spasticity	MAS	MAS score	T ₀
2014	Ankle movement	Goniometer	pADFM	T ₁ (immediately after single session)
	Muscle properties	Ultrasonographic measurement Linear transducer (MyLab 70X Vision, Esaote)	Echo intensity (Heckmatt grades)	I_2 (4 weeks post-treatment)
	Electrophysiological effects	Not reported	F-wave min. Latency (ms)	To
			Tibial nerve conduction velocity (m/s)	T_1 (4 weeks post-treatment)
			CMAP latency (ms)	
			LMAP amplitude (mv)	

Table 6. Assessment characteristics.

(Continued)

		E	Evaluation	
Study	Outcome	Tool	Variables	Period
Kim et al., 2015	Plantar fascia thickness Spasticity	US imaging system (Accuvix V10, Samsung Medison) Myotonometer (Neurogenic Technologies Inc.)	Plantar fascia thickness Tension (displacement) of medial gastrocnemius (mm)	T ₀ T ₁ (6 weeks post-treatment) T ₂ (6 months post-treatment)
	Pain Gait ability	VAS FGA test	VAS score FGA score	
Ratsgoo <i>et al.</i> , 2016	Leg circumference Muscle architecture	Metric tape Ultrasonographic device (Medison X8, Medison Co)	Leg circumference (mm) Pennation anglemuscle thickness (mm) fascicle length (mm)	T ₀ T ₁ (after single session 1) T ₂ (30 min)
	Spasticity Gait ability Ankle movement	MMASVAS TUG test Manual goniometer	MMAS scoreVAS self-reported evaluation of spasticity TUG score (s) pROM	T ₀ T ₁ (30 min)
Radinmehr <i>et al.</i> , 2017	Spasticity Electrophysiological effects Range of motion	MMAS EMG Medelec machine (TD50 TEK Amodel, England) Ankle biplane goniometer (A Bissel Health Care, model 7524)	MMAS grade H _{max} /M _{max} ratioH-reflex latency (msec) aROMpROM for gastrocnemius and soleus	T_0 T_1 (immediately after single session) T_2 (1 h after single session)
	Biomechanical effects Gait ability	Hand-held dynamometer (North Coast Medical, model 2845) TUG test	PPFT (Nm) at slow and high velocity TUG score (seconds)	
Sawan <i>et al.</i> , 2017	Electrophysiological effects Range of motion Gait ability	EMG (Neuroscreen plus v. 1.59 mm Erich Jseger Gmbh, Germany Digital goniometer (Model SR 360 Flexometer) 10-m walk test	H _{max} /M _{max} ratio of the soleus Dorsiflexion active ROM 10-m walk time (seconds)	T _o T ₁ (end of treatment /week 6)
ATL, Achilles tendon leng	tth; CMAP, compound muscle action	ATL, Achilles tendon length; CMAP, compound muscle action potential of tibial nerve; CS, clonus score; FGA, functional gait assessment; FMA, Fugl-Myer Assessment; MAS, Modified Ashworth Scale; MFL, muscle fascicle length;	t assessment; FMA, Fugl-Myer Assessment; MAS, Modified As	hworth Scale; MFL, muscle fascicle length;

Table 6. (Continued).

MMAS, modified Ashworth Scale; pROM, passive range of motion; MT, muscle thickness; PA, functional gait assessment; FMA, Fugl-Myer Assessment; MAS, Modified Ashworth Scale; MFL, muscle fascicle length; MMAS, modified modified Ashworth Scale; pROM, passive range of motion; MT, muscle thickness; PA, pennation angle; pADFM, passive ankle dorsiflexion motion; PET, peak eccentric torque; PPFT, passive plantarflexor torque; TTAs, torque threshold angles; TUG, Timed Up and Go Test; To: baseline.

Table 7. Effectiveness of extracorporeal shock wave therapy (ESWT) on clinical spasticity.

Study	Outcome measure	Variables	Time points for comparisons	Intragroup differences from baseline (T ₀) in ESWT groups <i>P</i> -value	Between group differences (ESWT vs control) <i>P</i> -value
	measure	Valiables	Time points for comparisons	P-Value	P-value
RCTs	MAC	MAS soleus	T (after easier 1)	NS	-NS
Tirbisch <i>et al.</i> ,	MAS		T_1 (after session 1) T_1 (and of treatment (week 2))	NS	-113
2015		score	T_2 (end of treatment /week 3)	NS	-NS
		MAS gastrocnemius	T_1 (after session 1) T_2 (end of treatment /week 3)	0.0195	-INS
	Tardieu Scale	score	T_1 (after session 1)	NS	NS
	Taluleu Scale	Y angle	T_2 (end of treatment /week 3)	NS	NS
		X score pROM	1 ₂ (end of treatment /week 5)	CN	IN S
Tabari at al	ΜΛΟ	extensibility	T (after cossion 1/work 1)	0.02	NS
Taheri <i>et al.,</i>	MAS	MAS gastrocnemius	T_1 (after session 1/week 1)	0.02	NS
2017		score	T_2 (end of treatment/week 3)	0.02	
Mar at al		MAC	T_3 (9 weeks post-treatment)	NS a as ^b i - a aats	0.022
Wu et al.,	MAS	MAS gastrocnemius score	T ₁ (1-week post-treatment)	0.05 ^{b;} <0.001 ^c <0.001 ^{b,c}	-
2017			T_2 (4-week post-treatment)	<0.001 ^{-,-} <0.001 ^{b,c}	
	Taudian Carla	Taudian an ola	T_3 (8-week post-treatment)		
	Tardieu Scale	Tardieu angle	T ₁ (1-week post-treatment)	0.002 ^b ; <0.001 ^c	-
			T_2 (4-weeks post-treatment)		
Les et al		MAC also for the second	T_3 (8-week post-treatment)	<0.001 ^b ; 0.004 ^c	o o sh
Lee et al.,	MAS	MAS plantarflexor score	T_1 (30 min after single session)	NS	0.04 ^h
2018			T ₂ (1-week post-treatment)	NS	0.02 ^h
I			T_3 (4-week post-treatment)	<0.05	0.04 ^h
Yoon <i>et al.</i> ,	MAS	MAS semitendinous score	T_1 (after session 1/week 1)	<0.05 ^d	NS
2017			T ₂ (after session 2/week 2)	<0.05 ^{d,e}	NS
			T_3 (end of treatment /week 3)	0.003 ^{d,e}	NS
		Modified Tardieu Score	T_1 (after session 1/week 1)	<0.05 ^d ; NS ^e	NS
	Scale		T_2 (after session 2/week 2)	<0.05 ^{d,e}	NS
			T_3 (end of treatment/week 3)	<0.001 ^{d,e}	NS
Non RCTs			T (1) (1) (2) (3)		
Sohn <i>et al.,</i> 2011	MAS	MAS plantarflexor score	T ₁ (immediately after single session)	<0.05	-
Moon <i>et al.</i> ,	MAS	MAS plantarflexor score	T ₁ sham	NS	-
2013			T ₂ (after session 3/week 3)	0.002	
			T ₃ (1-week post-treatment)	0.02	
			T ₄ (4-week post-treatment)	NS	
Santamato	MAS	MAS plantarflexor score	T ₁ (immediately after single	<0.01	-
<i>et al.,</i> 2014			session)	<0.05*	
			T ₂ (4-week post-treatment)		
Ratsgoo et al., 2016	MMAS	MMAS plantarflexor score	T ₁ (30 min after single session)	<0.01 ^a	_
	VAS self-reported spasticity	VAS score	T ₁ (30 min after single session)	<0.001ª	-
Radinmehr	MMAS	MMAS plantarflexor score	T_1 (immediately after end of	0.001 ^{f,g}	_
et al., 2017			treatment/week 1)	0.001 ^{f,g}	
,,			T_2 (1 h after end of		
			treatment /week 1)		

* Heckmatt grades I, II and III; lower but NS for grade IV;

^aBetween median and interquartiles range

^bWith focused ESWT

^cWith radial ESWT

^d ESWT muscle belly ^e ESWT muscle junction

^fKnee extended

^gKnee flexed

^hChange score

complementary view on the studies that were meta-analyzed. Risk of publication bias of included studies has been low, so a priori they are representative.

A range of outcome measures and evaluation times were used across the studies. For this reason, we decided to collect them into three groups, short, medium, and long term. Regarding the patient inclusion criteria, they agreed to use the Ashworth Scale, although they did not agree on pharmacological treatment which might affect the results.

Most studies agreed on using 1500 shots with a frequency between 4/5 Hz, more shots may be dangerous as post-stroke

subjects present sensory changes. One parameter that needs to be addressed is the number of ESWT sessions required for treatment success. As five studies used one single session and five used three sessions or more. It seems that three sessions (one/week) are more beneficial at long-term.

The MAS was the most used, and greater efficiency by clinical spasticity assessment was observed, compared to electro-physiological. However, this tool has been criticized as being subjective and it evaluates muscle tone at rest.⁵⁶ In addition, this clinical scale does not determine the cause of the resistance felt during the stretch, that is, neural or non-

Study	Tool	Variable	Time points for comparisons	Intragroup differences from baseline (T ₀) in ESWT groups <i>P-</i> value	Between group differences (ESWT vs. control) <i>P</i> -value
Sohn <i>et al.</i> , 2011	Medelec Synergy (Viasys healthcare, USA)	F-wave min. Latency (ms) H-reflex latency (ms) H-M ratio Tibial nerve conduction velocity (m/s) CMAP latency (ms) CMAP amolitiude (mv)	T ₁ (immediately after single session)	N	1
Santamato <i>et al.</i> , 2014	Not reported	F-wave min. Latency (ms) tibial nerve conduction velocity (m/s) CMAP latency (ms) CMAP amplitude (mV)	T_2 (4 week post-treatment)	NS	'
Radinmehr <i>et al.</i> , 2017	EMG Medelec machine (TD50 TEK Amodel, England)		T, (immediately after session 1/week 1) T ₂ (1 h after session1/week 1) T ₁ (immediately after session 1/week 1) T ₂ (1 h after session1/week 1)	NS 0.005 NS	1 1
Sawan <i>et al.</i> , 2017	EMG (Neuroscreen plus v. 1.59mm Erich Jseger Gmbh, Germany	H _{max} /M _{max} ratio of the soleus	T_1 (after session 6/week 6)	Not reported	0.001
CMAP, compound mu	CMAP, compound muscle action potential; NS, not significant; ms, milliseconds.				

Table 8. Effectiveness of extracorporeal shock wave therapy (ESWT) on electrophysiological parameters.

neural. The information obtained does not provide clinicians with insight into the patterns of muscle activation neither does it provide links between spasticity and voluntary movement.⁵⁷ Few studies used other tools such as electro-physiological ones. These are more objective than the clinical assessment, although they require more time and are costlier.

To date there is not enough evidence on ESWT decreasing the excitability of alpha motor neuron, according to Manganotti.⁵⁸ The H-reflex latency decreased transiently at finish of ESWT by Randimehr³⁸ and H_{max}/M_{max} ratio were improved at the end of treatment by Sawan³³ but these studies did not perform a follow-up. It agreed with the results observed by Kenmoku^{59,60} in an animal model.

The results of this review support the hypothesis that ESWT affects rheological properties of the spastic muscle. It seems that ESWT acts more in intrinsic hypertonia or spasticity (extracellular-matrix and muscle fibrosis) than a neural level. These findings are consistent with the conclusions reached by Marinelli⁶¹ with multiple sclerosis patients. Studies have shown separation of fixed actin-myosin links by the input of mechanical energy (spalling) as long as the force is perpendicular to the muscle fiber direction.⁶²

Most of the studies performed conventional physiotherapy in addition to ESWT, according by Alwardat.²⁰ The ESWT can be a beneficial option for spasticity as adjutant therapy to other interventions such as motor intervention (stimulating antagonist muscles), task related training, and muscles stretching exercises. This is consistent with two study's findings,^{63,64} that assessed hamstrings shortened in healthy people. They showed that the ESWT performed besides stretching have a significant improvement in flexibility, compared with only stretching, at finish of intervention and a follow up (4 weeks). The results also suggested that the mechanism of ESWT on muscle relaxation might be different from tissue regeneration effect wherein a certain amount of time is required.

A spasticity reduction at short term and maintained at medium and long term was observed in this review. This differs with the results found by Xiang¹⁹ and by Guo.¹⁶ They did not find statistically significant difference by the MAS in 4 weeks. It could be because they included upper and lower limb in the same meta-analysis.

It showed beneficial effects by ankle range of motion at long term, which strengthens our hypothesis. Nevertheless, that few beneficial effects were found by gait. Perhaps the assessment should be made long term (>9 weeks), so the subjects need more time for a new change. Gait speed is a complex functional activity and a multi-modal product of many processes. Ankle spasticity (*equinovarus* foot) restricts articular range of the ankle and the foot positioning in plantar flexion, which limits dorsiflexion. Besides, recent studies have reported that triceps surae is not responsible for the generation of propulsive force. It only supports the body during walking and prevents falls.⁶⁵ It seems logical that triceps surae was the most treated muscle by studies. Therefore, we are surprised that no study assessed balance as ankle strategy could improve if spasticity was reduced.⁶⁶

ESWT can improve the stiffness of connective tissue by directly acting on rheological properties of spastic muscle, improving myofascial viscoelasticity. According to Fischer,⁶⁷ ESWT application, reduced the dense fibrous generation and

Study	Tool	Variable	Knee position	Time points for comparisons	Intragroup differences from baseline (T0) in ESWT groups <i>P</i> -value	Between group differences (ESWT vs control) <i>P</i> -value
RCTs Taheri <i>et al.</i> , 2017	Goniometer	pROM (°)	Not reported	T_1 (after session 1/week 1) T_2 (end of treatment/week 3)	0.01 0.0001 ^a	NS 0.026 ^b
Wu et al., 2017	Hand-held goniometer	pROM (°)	Knee extended	 ¹3 (9 weeks post-treatment) ¹7 (1 week post-treatment) ¹2 (4 weeks post-treatment) 	<0.001% ^h <0.001% ^h 1000.001%	-1000.0
Lee <i>et al.</i> , 2018	Goniometer	pROM (°)	Knee flexed	 ¹³ (8 weeks post-treatment) ¹ (30 min after single session) ¹ (1 week post-treatment) 	0.013; <0.001" NS	NS
Tirbisch <i>et al.</i> 2015	Goniometer	pROM (°)	Not reported	 ¹³ (4 weeks post-treatment) T₁ (after session 1) T₂ (end of treatment /week 3) 	NS	NS
Non RCTs Moon <i>et al</i> , 2013	Goniometer	pROM (°)	Not reported	T_1 sham T_2 (end of treatment/week 3) T_3 (1 week post-treatment) T_1 (4 work post treatment)	SN	ŗ
Santamato <i>et al.</i> , 2014	Goniometer	pADFM(°)	Knee flexed	T ₁ (immediately after single session)	<0.05 ¹ ; <0.05 ^k	I
Ratsgoo <i>et al.</i> , 2016 Radinmehr <i>et al.</i> , 2017	Manual goniometer Ankle biplane goniometer (Bissel Health Care, model 7524)	pROM (°) pROM (°) aROM (°)	Knee extended Knee extended/flexed Knee extended/flexed	1_2 (4 weeks post-treatment) T_1 (30 min after single session) T_1 (immediately after single session) T_2 (1 h) T_1 (immediately after single session) T_2 (1 h)	0.001 0.001 ≤0.001€f ≤0.001€f 0.03 [€] NC ⁶ f	
Sawan <i>et al.</i> , 2017	Digital goniometer (Model SR 360 Flexometer)	aADFm(°)	Knee extended	T_1 (end of treatment/week 6)	Not reported	0.006
pROM, passive range of mov ^a Trend within groups by rep ^b Trend between groups by r ^c Week 12 by ANCOVA after o ^c Knee extended ^f Knee flexed ⁹ With focused ESWT ^h With radial ESWT ^h With radial ESWT ^t Heckmatt grades I,II, III ^t Heckmatt grade IV	pROM, passive range of movement (from maximum dorsiflexion to maximum plantarflexion); aADFM, active ^a Trend within groups by repeated measurements of ANOVA. ^b Trend between groups by repeated measurements of ANOVA after controlling baseline values as covariate ^c Week 12 by ANCOVA after controlling baseline values as covariate ^c Meee to extended ^f Knee extended ^f Knee flexed ^f With focused ESWT ^h With radial ESWT ^h Heckmatt grades I,II, III ^k Heckmatt grade IV	iximum plantarflexion ontrolling baseline va	n); aADFM, active ankle dorsifl lues as covariate	pROM, passive range of movement (from maximum dorsiflexion to maximum plantarflexion); aADFM, active ankle dorsiflexion motion; pADFM, passive ankle dorsiflexion motion; NS, not significant. ^a Trend within groups by repeated measurements of ANOVA. ^b Trend between groups by repeated measurements of ANOVA after controlling baseline values as covariate ^c Week 12 by ANCOVA after controlling baseline values as covariate ^c Mee to active acted after controlling baseline values as covariate ^c Met acted to after controlling baseline values as covariate ^c Mith focused ESWT ^h Mith radial ESWT ^h Heckmatt grades I,II, III ^k Heckmatt grade IV	lexion motion; NS, not significant.	

Table 9. Effectiveness of extracorporeal shock wave therapy (ESWT) on range of ankle motion.

				Intragroup differences	Between group
				baseline (T ₀) in ESWT groups	(ESWT vs control)
Study	Tool	Variable	Time points for comparisons	P-value	P-value
Moon <i>et al.</i> , 2013	Isokinetic dynamometerBiodex system 4 (Biodex Medical System, USA)	PET (Nm) at 60, 180 and 240°/s	T ₁ sham T ₂ (after session 3/week 3) T ₂ (1 week nost-treatment)	NS < 0.05 5،س ^ر NS ⁵ : <0.05 ^{m,f}	
		TTAs at 60, 180 and 240°/s	T ₄ (4 weeks post-treatment) T ₁ sham T ₂ (after session 3/week 3) T ₃ (1 week post-treatment)	NS NS AC .05 5mJ	,
Kim <i>et al.</i> , 2015	Myotonometer (Neurogenic Technologies	Tension (displacement) of de medial gastrocnemius	T_4 (4 weeks post-treatment) T_2 (6 weeks post-treatment)	NS <0.001	,
Ratsgoo <i>et al.</i> , 2016	ınc.) Metric tape	(mm) Leg circumference (mm)	 13 (6 months post-treatment) T₁ (immediately after single session) T₁ (20 min after single session) 	<pre><0.001 NS 0.02</pre>	NS
	Ultrasonographic device (Medison X8, Medison Co., South Korea)	Pennation angle (°) muscle thickness (mm) facricle laonth (mm)	T ₁ (30 min after single session)		NS
Wu <i>et al.</i> , 2017	Tekscan platform (Boston, USA)	Mean dynamic plantar contact area (cm2)	T_1 (1-week post-treatment) T_2 (4-week post-treatment)	<0.001 ^{9,h} <0.001 ^{9,h}	
Radinmehr <i>et al.</i> , 2017	Hand-held dynamometer (North Coast Medical, model 2845)	PPFT (Nm) at slow (3 s) velocity	 a. o-week post-rueatment) T1 (immediately after single singlesion) T, (1 h after single session) 	≤0.001°; >0,05 ^f ≤0.001°; >0,05 ^f	,
		PPFT (Nm) at high velocity (1 s)	T1 (immediately after single session) T2 (1 h after single session)	<0.05 ^{e,f} <0.05 ^{e,f}	
Lee <i>et al.</i> , 2018	Ultrasonographic measurement	ATL MFL MT PA	T_1 (30 min after single session) T_2 (1-week post-treatment) T_3 (4-week post-treatment)	<0.05 <0.05 <0.05	≤0.001ª.⊱.d, 0.004 ^b ≤0.001ª.b.c.d 0.004ª; 0.002 ^b ; <0.001 ^{c.d}

^aAchilles tendon length. ^bMuscle fascicle length. ^cMuscle thickness. ^cMuscle thickness. ^dPennation angle. ^eKnee extended. ^fKnee flexed. ⁹With focused ESWT. ^bWith radial ESWT. ⁵At slow velocity (60%). ^mAt moderate velocity (180°/s). ^fAt fast velocity (240°/s).

Table 10. Effectiveness of extracorporeal shock wave therapy (ESWT) on biomechanical parameters and muscle architecture.

Table 11. Effectiveness of ESWT on lower limb functionality and gait.

Study	Tool	Variable	Time points for comparisons	Intragroup differences from baseline (T ₀) in ESWT groups(ESWT <i>P</i> -value	Between group vs. control) differences <i>P</i> -value
Moon <i>et al.</i> , 2013	FMA scale	FMA lower limb	T_1 sham T_2 (end of treatment/week 3) T_3 (1 week post-treatment) T_4 (4 weeks post-treatment)	NS	-
Kim <i>et al.</i> , 2015	FGA test	FGA score	T ₂ (6 weeks post-treatment) T ₃ (6 months post-treatment)	<0.001<0.001	-
Ratsgoo et al., 2016	TUG test	TUG score (s)	T_1 (30 min after single session)	<0.001	-
Taheri <i>et al.</i> , 2017	3-m walk test	3-m walk duration (s)	T ₁ (after session 1/week 1)	NS 0.003 ª	NS ^b 0.033 ^c
	LEFS	LEFS score	T_2 (end of treatment/week 3) T_3 (9 weeks post-treatment)	0.003ª	0.004 ^c
Wu et al., 2017	10-m walk test	Gait speed (m/s)	T_3 (8 weeks post-treatment)	NS	-
Radinmehr et al., 2017	TUG test	TUG score (seconds)	T_1 (immediately after single sessio T_1 (1 h after single session)	n) ≤ 0.05≤0.05	-
Sawan <i>et al.</i> , 2017	10-m walk test	10-m walk time (sec)	T_1 (after session 6/week 6)	Not reported	0.009
Lee et al., 2018	FMA scale	FMA lower limb	T ₁ (1-week post-treatment) T ₂ (4-week post-treatment)	<0.05<0.05	NS

FMA, Fugl-Myer Assessment; FGA, functional gait assessment; TUG, Timed Up and Go Test; LEFS, lower extremity functional score.

^aTrend within groups by repeated measurements of ANOVA.

^bTrend between groups by repeated measurements of ANOVA after controlling baseline values as covariate.

^cWeek 12 by ANCOVA after controlling baseline values as covariate.

Table 12. Effectiveness of ESWT on clonus.

Study	Tool	Variable	Time points for comparisons	Intragroup differences from baseline (T ₀) in ESWT groups <i>P</i> -value	Between group differences (ESWT vs. control) <i>P</i> -value
Moon <i>et al.,</i> 2013	Clonus scale	Clonus score	T ₁ sham T ₂ (after session 3/week 3) T ₃ (1 week post-treatment) T ₄ (4 weeks post-treatment)	NS	-
Taheri <i>et al.,</i> 2017	Clonus scale	Clonus score	T ₁ (after session 1/week 1) T ₂ (after session 3/week 3) T ₃ (9 weeks post-treatment)	NS NSª	NS NS ^b NS ^c

^aTrend within groups by repeated measurements of ANOVA.

^bTrend between groups by repeated measurements of ANOVA after controlling baseline values as covariate.

^cWeek 12 by ANCOVA after controlling baseline values as covariate.

Table 13. Effectiveness of ESWT on pain.

Study	Tool	Variable	Time points for comparisons	Intragroup differences from baseline (T ₀) in ESWT groups <i>P</i> -value	Between group differences (ESWT vs. control) <i>P</i> -value
Kim <i>et al.,</i> 2015	VAS	VAS score	T_2 (6 week post-treatment) T_3 (6 months post-treatment)	<0.001 <0.001	-
Taheri <i>et al.,</i> 2017	VAS	VAS score	T_1 (after session 1/week 1) T_2 (end of treatment/week 3) T_3 (9 weeks post-treatment)	0.01 0.0001ª	NS 0.007^b 0.009^c

^aTrend within groups by repeated measurements of ANOVA.

^bTrend between groups by repeated measurements of ANOVA after controlling baseline values as covariate.

^cWeek 12 by ANCOVA after controlling baseline values as covariate.

Table 14. Adverse effects.

Study	Adverse effects
Sohn <i>et al.</i> , 2011	Mild pain (VAS 3.23 ± 1.28)
	No other side effects
Moon <i>et al.</i> , 2013	Not reported
Santamato et al., 2014	Mild adverse effects were reported (injection site pain for five patients, lower limb muscular weakness for two patients) but were resolved in a few days
Kim <i>et al.</i> , 2015	Not reported
Tirbisch et al., 2015	Mild pain for three out of four patients during the first two sessions (2.667 \pm 0.577 in the first and 1.333 \pm 0.577 in the second). There were no other side effects. Indeed, there was no hematoma or recrudescence of pain between shock wave sessions.
Ratsgoo et al., 2016	Not reported
Taheri et al., 2017	Not reported
Wu et al., 2017	No adverse events, such as skin petechiae, muscle hematoma, and focal edema were reported during the study period.
Yoon et al., 2017	Not reported
Radinmehr et al., 2017	Patients reported no discomfort during the treatment, and none reported any adverse responses
Sawan <i>et al.</i> , 2017	Not reported
Lee et al., 2018	Not reported

	Befo	re ESV	NΤ	Afte	ESW	т		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
3.5.1 short-term									
Lee et al. (2018)	2.22	1.09	9	1.89	0.78	9	3.7%	0.33 [-0.60, 1.26]	
Moon et al. (2013)	2.5	0.67	30	1.41	0.67	30	6.1%	1.61 [1.02, 2.19]	
Radinmher et al. (2017)	0.45	0.25	12	0.41	0.25	12	4.4%	0.15 [-0.65, 0.96]	
Ratsgoo et al. (2016)	5.52	1.66	17	4.53	0.73	17	5.2%	0.75 [0.06, 1.45]	
Santamato et al. (2014)	3.5	1	23	2.1	1.1	23	5.6%	1.31 [0.67, 1.95]	
Sawan et al. (2017)	2.93	0.64	20	1.79	0.4	20	4.6%	2.09 [1.31, 2.88]	
Sohn et al. (2011)	2.67	1.15	10	1.22	1.03	10	3.4%	1.27 [0.29, 2.25]	
Taheri et al. (2017)	2.6	0.5	13	1.8	0.5	13	3.9%	1.55 [0.66, 2.44]	
Tirbish et al. (2015a)	2.87	1.03	4	1.5	1.29	4	1.7%	1.02 [-0.53, 2.57]	
Tirbish et al. (2015b)	3	0.81	4	1.37	0.47	4	1.1%	2.14 [0.12, 4.16]	+
Yoon et al. (2017a)	2.92	1	13	2.38	0.76	13	4.5%	0.59 [-0.20, 1.38]	
Yoon et al. (2017b)	2.85	0.55	13	2.31	0.63	13	4.4%	0.88 [0.07, 1.70]	
Subtotal (95% CI)			168			168	48.6%	1.10 [0.75, 1.45]	•
Heterogeneity: Tau ² = 0.18	; Chi ² = :	22.28,	df = 11	(P = 0.0))2); ² =	51%			
Test for overall effect: Z = 6	.12 (P ≤	0.000	D1)						
3.5.2 medium-term									
Lee et al. (2018)	2 22	1.09	9	1.67	0.7	9	3.6%	0.57 [-0.38, 1.52]	
Moon et al. (2013)	2.5		30		0.65	30	6.4%	1.24 [0.69, 1.80]	
Santamato et al. (2014)	3.5	1	23	2.6	1.2	23	6.0%	0.80 [0.20, 1.40]	
Wu et al. (2017a)	3	0.7	15	2.5	0.7	16	5.0%	0.70 [-0.03, 1.42]	
Wu et al. (2017b)	3.1	0.7	15	2.3	0.5	16	4.6%	1.29 [0.50, 2.07]	
Subtotal (95% CI)			92			94	25.5%	0.97 [0.66, 1.27]	•
Heterogeneity: Tau ² = 0.00	; Chi ^z = :	3.07, d	f= 4 (P	= 0.55)	; ² = 0	%			
Test for overall effect: Z = 6									
3.5.3 long-term									
Kim et al. (2015)	4.1	0.13	10	3.89	0.13	10	3.2%	1.55 [0.52, 2.57]	
Lee et al. (2018)		1.09	9		0.52	9	3.5%	0.74 [-0.23, 1.70]	
Moon et al. (2013)	2.5		30	1.75	0.62	30	6.4%	1.15 [0.60, 1.70]	
Taheri et al. (2017)	2.6	5	13	1.5	0.75	13	4.6%	0.30 [-0.48, 1.07]	
Wu et al. (2017a)	3	0.7	15	1.9	0.5	15	4.1%	1.76 [0.90, 2.62]	
Wu et al. (2017b)	3.1	0.7	16	1.8	0.5	16	4.0%	2.08 [1.20, 2.96]	
Subtotal (95% CI)			93			93	25.9%	1.24 [0.72, 1.76]	•
Heterogeneity: Tau ² = 0.24	; Chi ^z = 1	12.07,	df = 5 (P = 0.03	3); 2 = 1	59%			
Test for overall effect: Z = 4	.68 (P ≺	0.000	D1)						
Total (95% CI)			353			355	100.0%	1.09 [0.87, 1.32]	•
Heterogeneity: Tau ² = 0.12	; Chi ^z = 3	38.56.	df = 22	(P = 0.0))2); * =	43%		-	
Test for overall effect: Z = 9						A 17 A 60			-2 -1 0 1 2
Test for subgroup difference	•			(P = 0.	65), I ^z :	= 0%			Before ESWT After ESWT
		100000000000000000000000000000000000000				10010101			

Figure 3. Forest plot of the standard mean difference and 95% confidence interval (95% CI) for spasticity of before and after extracorporeal shock wave treatment (ESWT). Wu *et al.*, (2017a): focused ESWT; Wu *et al.*, (2017b): radial ESWT; Yoon *et al.*, (2017a): belly application, Yoon *et al.*, (2017b): junction application, Tirbish *et al.*, (2015a): soleus muscle assessment, Tirbish *et al.*, (2015b): gastrocnemious muscle assessment.

could degrade the fibrous envelope. ESWT could reduce capsule formation and may induce fibrotic tissue restoration or reabsorption. Moreover, ESWT increases the blood supply to the tissue and modulates the growth factors activation. It can also induce non-enzymatic and enzymatic nitric oxide synthesis.⁶⁸

Morphological assessment of neuromuscular junction by electron microscopy showed that ESWT destroyed end plates in neuromuscular junction. Although all end plates remained in contact with axon terminals, end plates of ESWT exposed muscles were significantly thinner, and the interval between junction folds was increased.⁶⁰

No studies found serious complications after the treatment as a previous study had reported.⁶⁹ Three studies reported mild adverse effects during application of ESWT such as mild pain and lower limb muscular being these symptoms solved in few days.

There are some limitations to this review, which will affect the generalizability of the results. The first limitation is that the small sample size of participants in the included studies may have affected the validity of the results in meta-analysis, as it was shown that the small studies inclusion might lead to Type-I error.²⁷ Furthermore, there are five of the included studies with a risk of bias (PEDro score \leq 3 points). This result should be interpreted with caution because only four studies were of 'high' quality and it is possible that both 'fair' and 'poor' quality studies exaggerate the real size of the treatment effect. Concerning the recommendations performed by Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable,⁷⁰ most of studies did not adequately provide complete information. Finally, a great diversity or variability was found in the parameters related to the intervention (s), as well as in those related to the evaluation procedures. In the present review, a certain grouping was opted, although other types of classifications or groupings could have been carried out.

Further research from well-designed and high-quality studies with a large number of participants is required to standardize the treatment parameters and demonstrate the optimal ESWT approach for health-care decision-making.

		CP		ESW	/T plus	СР		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.2.1 short-term									
Lee et al. (2018)	0.11	0.35	9	-0.33	0.535	9	45.0%	0.44 [0.02, 0.86]	- - -
Taheri et al. (2017)	-0.4	1.8	12	-0.8	3.27	13	1.9%	0.40 [-1.65, 2.45]	
Tirbish et al. (2015a)	-0.38	1.63	4	-1.37	2.7	4	0.8%	0.99 [-2.10, 4.08]	
Tirbish et al. (2015b)	-0.25	0.41	4	-1.63	2.6	4	1.2%	1.38 [-1.20, 3.96]	
Yoon et al. (2017a)	0	0.9	18	-0.54	2.9	13	3.0%	0.54 [-1.09, 2.17]	
Yoon et al. (2017b)	0	0.5	18	-0.54	2.5	13	4.1%	0.54 [-0.84, 1.92]	
Subtotal (95% CI)			65			56	56.0%	0.48 [0.10, 0.85]	◆
Heterogeneity: Tau ² = I	0.00; Chi	i ^z = 0.6	i3, df = :	5 (P = 0	.99); I ^z =	= 0%			
Test for overall effect: 2	Z = 2.51 ((P = 0.)	01)						
1.2.2 medium-term									
Lee et al. (2018)	0.22	0.46	9	-0.55	0.78	9	22.4%	0.77 [0.18, 1.36]	
Subtotal (95% CI)			9			9	22.4%	0.77 [0.18, 1.36]	◆
Heterogeneity: Not app	olicable								
Test for overall effect: 2	Z = 2.55 ((P = 0.)	01)						
1.2.3 long-term									
Lee et al. (2018)	0	0.53	9	-0.66	0.77	9	21.1%	0.66 [0.05, 1.27]	
Taheri et al. (2017)	-0.4	2	12	-1.1	6.7	13	0.5%	0.70 [-3.11, 4.51]	
Subtotal (95% CI)			21			22	21.6%	0.66 [0.06, 1.26]	◆
Heterogeneity: Tau ² = I	0.00; Chi	i² = 0.0	0, df = 1	1 (P = 0	.98); l ^z =	= 0%			
Test for overall effect: 2	Z = 2.15 ((P = 0.)	03)						
Total (95% CI)			95			87	100.0%	0.58 [0.30, 0.86]	•
Heterogeneity: Tau ² = I	0.00; Chi	i ^z = 1.3	7. df = 1	8 (P = 0	.99); l ^z =	= 0%			
Test for overall effect: 2	Delivery former management		2.00/ C 179520		10191 DI 1 1				-4 -2 0 2 4
Test for subgroup diffe				f=2(P	= 0.69).	$ ^{2} = 0\%$	5		Favours CP Favours ESWT plus C

Figure 4. Forest plot of spasticity by modified Ashworth Scale. Comparison between extracorporeal shock waves therapy (ESWT) plus conventional therapy (CP) vs CP. Yoon *et al.* (2017a): belly application ESWT, Yoon *et al.* (2017b): junction application ESWT, Tirbish *et al.* (2015a): soleus muscle assessment, Tirbish *et al.* (2015b): gastrocnemious muscle assessment.

Conclusions

Extracorporeal shock wave therapy added to conventional physiotherapy reduces clinically spasticity. It increases range of motion and lower limb function on lower limb in chronic stroke survivors at short and long term. ESWT is a modern, non-invasive therapeutic tool, which could be considered effective and safe. To ensure efficacy, the use of ESWT requires accurate identification of the area to be treated using ultrasound or radiographic guidance.⁷¹ This allows the most favorable therapeutic effect and avoids damage to the surrounding tissue.¹⁵

Acknowledgments

R.C.V and A.G.R contributed to initiating and designing the review; analysis and interpretation of data; writing the paper and making amendments to draft articles following review; final approval of version to be published. A.P.B; P.S. LL and J.C.S contributed to analysis and interpreting the data; reviewing draft article critically for important intellectual content and final approval of the version to be published. G.U.C contributed in methods, statistical analysis, and Cochrane handbook interpretation. J. O. S. contributed in data analysis. Finally, L.G.R. and A. M. E. contributed to English revision language.

Funding

The authors received no financial support for the research, authorship, and/or publication of this review.

ORCID

Rosa Cabanas-Valdés p http://orcid.org/0000-0002-5255-2494 Jordi Calvo-Sanz p http://orcid.org/0000-0002-6860-6725 Pol Serra-Llobet (http://orcid.org/0000-0001-6137-1321 Albert Pérez-Bellmunt (http://orcid.org/0000-0002-5607-0708 Ana Germán-Romero (http://orcid.org/0000-0002-6605-8577

References

- Rehme AK, Grefkes C. Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol (Lond). 2013;591(1):17–31. doi:10.1113/jphysiol.2012.243469.
- Trompetto C, Marinelli L, Mori L, et al. Pathophysiology of spasticity: Implications for neurorehabilitation. *Biomed Res Int.* 2014:8. Article ID 354906.
- 3. Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: Sequelae and burden on stroke survivors and caregivers. *Neurology.* 2013;80(3 Suppl 2):S45–52. doi:10.1212/WNL.0b01 3e3182764c86.
- 4. Lance JW. The control of muscle tone, reflexes, and movement: Robert wartenberg lecture. *Neurology*. 1980;30(12):1303–1313. doi:10.1212/wnl.30.12.1303.
- Stecco C, Porzionato A, Lancerotto L, et al. Histological study of the deep fasciae of the limbs. *J Bodywork Bodywork Ther*. 2008;12 (3):225–230. doi:10.1016/j.jbmt.2008.04.041.
- Lieber RL, Runesson E, Einarsson F, Fridén J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. *Muscle Nerve*. 2003;28 (4):464–471. doi:10.1002/mus.10446.
- Kuo C, Hu G. Post-stroke spasticity: A review of epidemiology, pathophysiology, and treatments. *Int J Gerontol.* 2018;12 (4):280–284. doi:10.1016/j.ijge.2018.05.005.
- RdO C, Cacho EWA, Loureiro AB, et al. The spasticity in the motor and functional disability in adults with post-stroke hemiparetic. *Fisioterapia Em Movimento*. 2017;30(4):745–752. doi:10.1590/1980-5918.030.004.ao09.
- Francisco GE, McGuire JR. Poststroke spasticity management. Stroke. 2012;43(11):3132–3136. doi:10.1161/STROKEAHA.111.639831.

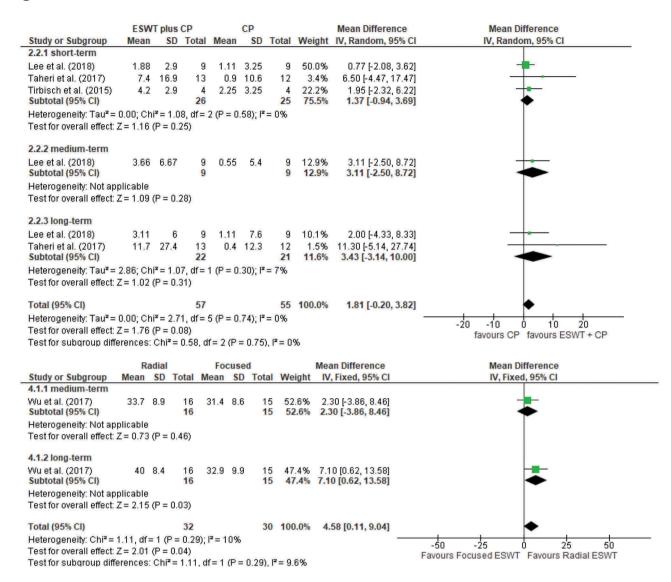


Figure 5. Forest plot of range of motion of extracorporeal shock waves therapy (ESWT) plus conventional therapy (CP) vs CP and comparison between radial ESWT versus focused ESWT.

	ESW	T plus	CP		СР		3	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
7.1.2 medium-term									
Lee et al. (2018)	1.55	1.23	9	1.33	1.99	9	21.3%	0.13 [-0.80, 1.05]	
Taheri et al. (2017) Subtotal (95% CI)	9.8	21	13 22	1.5	12.15	12 21	28.7% 50.0%	0.46 [-0.33, 1.26] 0.32 [-0.28, 0.92]	—
Heterogeneity: Tau ² = Test for overall effect:	worker that is		29, df=	: 1 (P =	0.59); I²				
		<i>v</i> . <i>•</i>	,						
7.1.3 long-term									
Lee et al. (2018)	3.33	2.7	9	2.66	2.6	9	21.2%	0.24 [-0.69, 1.17]	
Taheri et al. (2017) Subtotal (95% CI)	10.7	24.5	13 22	1.5	12.6	12 21	28.8% 50.0%	0.45 [-0.35, 1.25] 0.36 [-0.24, 0.97]	↓
Heterogeneity: Tau ² =	All and a second second			: 1 (P =	0.74); I²	= 0%			
Test for overall effect:	Z=1.17	(P=0	.24)						
Total (95% CI)			44			42	100.0%	0.34 [-0.09, 0.77]	•
Heterogeneity: Tau² =	and the second		a sector	: 3 (P =	0.94); l²	= 0%		-	
Test for overall effect:									favours CP favours ESWT plus C
Test for subgroup dif	rences	: Chi² =	= 0.01,	dt = 1 (F	' = 0.92), I* = 0'	%		

Figure 6. Forest plot of lower limb motor function. Comparison between extracorporeal shock waves therapy (ESWT) plus conventional therapy (CP) vs CP.

		CP		ESV	VT + C	Р		Mean Difference	Mean Difference
Study or Subgroup	Mean		Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
10.1.1 muscle belly sl	hort-term	1							
Lee et al. (2018)	0.11	0.35		-0.53		9	58.6%	0.64 [0.23, 1.05]	
Yoon et al. (2017a) Subtotal (95% Cl)	0	0.9	18 27	-0.54	2.9	13 22	3.8% 62.4%	0.54 [-1.09, 2.17] 0.63 [0.23, 1.04]	•
Heterogeneity: Tau ² =	0.00; Chi	² = 0.0	1, df=	1 (P = 0	.91); l ²	= 0%			
Test for overall effect: 2	Z = 3.09 ((P = 0.)	002)						
10.1.2 muscle belly lo	ng-term								
Lee et al. (2018)	0	0.53	9	-0.66	0.77	9	27.1%	0.66 [0.05, 1.27]	
Subtotal (95% CI)			9			9	27.1%	0.66 [0.05, 1.27]	-
Heterogeneity: Not app									
Test for overall effect: 2	Z= 2.12 ((P = 0.)	03)						
10.1.3 myotendinous	junction	short-	term						
Taheri et al. (2017)	-0.4		13		3.27	12	2.3%	0.40 [-1.69, 2.49]	
Tirbish et al. (2015a)	-0.37			-1.37	2.7	4	1.1%	1.00 [-2.09, 4.09]	
Tirbish et al. (2015b)	-0.25			-1.63		4	1.5%	1.38 [-1.20, 3.96]	
Yoon et al. (2017a)	0	0.9	18	-0.54	2.5	13	5.0%	0.54 [-0.88, 1.96]	
Subtotal (95% CI)			39			33	9.9%	0.69 [-0.33, 1.70]	
Heterogeneity: Tau² =				3 (P = 0	.93); [*	= 0%			
Fest for overall effect: 2	2 = 1.33 ((P = 0.1	18)						
10.1.4 myotendinous	junction	long-t	erm						
Taheri et al. (2017)	0.4	2	13	-1.1	6.7	12	0.6%	1.50 [-2.44, 5.44]	
Subtotal (95% CI)			13			12	0.6%	1.50 [-2.44, 5.44]	
Heterogeneity: Not app									
Test for overall effect: 2	Z=0.75 ((P = 0	46)						
Total (95% CI)			88			76	100.0%	0.65 [0.33, 0.97]	•
Heterogeneity: Tau ² =	0.00: Chi	² = 0.6	3. df =	7 (P = 1	.00); I ^z	= 0%			
Test for overall effect: 2									-4 -2 0 2 4
Test for subgroup diffe		•		f=3(P	= 0.98), I ² = 0	%		favour CP favour ESWT + CP

Figure 7. Forest plot of application point. Sensitive analysis of comparison between extracorporeal shock waves therapy (ESWT) plus conventional therapy (CP) vs CP.

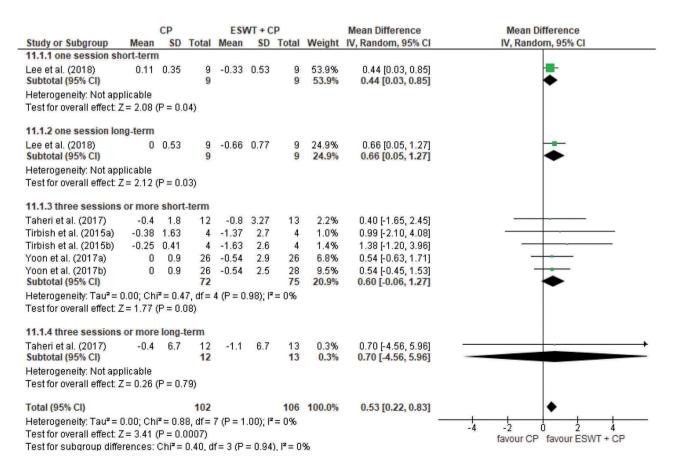


Figure 8. Forest plot of number of sessions. Sensitive analysis of comparison between extracorporeal shock waves therapy (ESWT) plus conventional therapy (CP) vs CP.

- Gillard PJ, Sucharew H, Kleindorfer D, et al. The negative impact of spasticity on the health-related quality of life of stroke survivors: A longitudinal cohort study. *Health Qual Life Outcomes.* 2015;13 (1):159. doi:10.1186/s12955-015-0340-3.
- 11. Martins A. The role of spasticity in functional neurorehabilitation-part I: The pathophysiology of spasticity, the relationship with the neuroplasticity, spinal shock and clinical signs. *Arch Med.* 2016;8:3–7.
- Rassweiler JJ, Knoll T, Köhrmann K, et al. Shock wave technology and application: An update. *Eur Urol.* 2011;59(5):784–796. doi:10.1016/j.eururo.2011.02.033.
- Schmitz C, Csaszar NB, Milz S, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: A systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116:115–138. doi:10.1093/bmb/ldv047.
- Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. *J Bone Joint Surg Am.* 2018;100(3):251–263. doi:10.2106/JBJS.17.00661.
- Romeo P, Lavanga V, Pagani D, Sansone V. Extracorporeal shock wave therapy in musculoskeletal disorders: A review. *Med Princ Pract.* 2014;23(1):7–13. doi:10.1159/000355472.
- Guo P, Gao F, Zhao T, Sun W, Wang B, Li Z. Positive effects of extracorporeal shock wave therapy on spasticity in poststroke patients: A meta-analysis. J Stroke Cerebrovasc Dis. 2017;26(11):2470–2476. doi:10.1016/j.jstrokecerebrovasdis.2017.08.019.
- Suputtitada A. Novel evidences of extracorporeal shockwave therapy for spasticity. J Physic Med Rehabilita Stu. 2018;1:101.
- Dymarek R, Halski T, Ptaszkowski K, Slupska L, Rosinczuk J, Taradaj J. Extracorporeal shock wave therapy as an adjunct wound treatment: A systematic review of the literature. Ostomy Wound. 2014;60:26-39.
- Xiang J, Wang W, Jiang W, Qian Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A systematic review and meta-analysis of randomized controlled trials. J Rehabil Med. 2018;50 (10):852–859. doi:10.2340/16501977-2385.
- Alwardat M. Comments on: "Positive effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A metaanalysis". J Stroke Cerebrovasc Dis. 2018;27(7):2046. doi:10.1016/j. jstrokecerebrovasdis.2018.02.001.
- Thibaut A, Chatelle C, Ziegler E, Bruno M, Laureys S, Gosseries O. Spasticity after stroke: Physiology, assessment and treatment. *Brain Inj.* 2013;27(10):1093–1105. doi:10.3109/02699052.2013.804202.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Int J Surg.* 2010;8(5):336–341. doi:10.1016/j.ijsu.2010.02.007.
- 23. Higgins JPT GS. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated march 2011]. the cochrane collaboration. http://handbook.cochrane.org. Updated 2011.
- Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. *BMJ*. 2014;348:g1687. doi:10.1136/bmj.g1687.
- Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. *Phys Ther.* 2003;83:713.
- 26. PEDro score. https://www.strokengine.ca/en/glossary/pedro-score/. Accessed December 13, 2018.
- Turner RM, Bird SM, Higgins JP. The impact of study size on meta-analyses: Examination of underpowered studies in cochrane reviews. *PloS One*. 2013;8(3):e59202. doi:10.1371/journal.pone.0059202.
- Tirbisch L. Effets des ondes de choc radiales sur la spasticité du triceps sural de patients hémiplégiques en phase subaiguë: Un essai contrôlé randomisé. *Kinésithérapie, la Revue.* 2015;15(164–-165):62–69. doi:10.1016/j.kine.2015.05.008.
- 29. Taheri P, Vahdatpour B, Mellat M, Ashtari F, Akbari M. Effect of extracorporeal shock wave therapy on lower limb spasticity in stroke patients. *Arch Iran Med.* 2017;20(6):338–343. doi:10.172006/AIM.004.
- 30. Wu YT, Chang CN, Chen YM, Hu GC. Comparison of the effect of focused and radial extracorporeal shock waves on spastic

equinus in patients with stroke: A randomized controlled trial. *Eur J Phys Rehabil Med.* 2018;54(4):518–525. doi:10.23736/S1973-9087.17.04801-8.

- 31. Yoon SH, Shin MK, Choi EJ, Kang HJ. Effective site for the application of extracorporeal shock-wave therapy on spasticity in chronic stroke: Muscle belly or myotendinous junction. Ann Rehabil Med. 2017;41(4):547–555. doi:10.5535/ arm.2017.41.4.547.
- 32. Lee CH, Lee SU, Lee SH, Yoo JI. Ultrasonographic evaluation for the effect of extracorporeal shock wave therapy on gastrocnemius muscle spasticity in patients with chronic stroke. *PMR*. 2018Apr;11 (4):363–371.
- Sawan S, Abd-Allah F, Hegazy MM, Farrag MA, El-Den NHS. Effect of shock wave therapy on ankle plantar flexors spasticity in stroke patients. *NeuroRehabilitation*. 2017;40(1):115–118. doi:10.3233/NRE-161396.
- 34. Rastgoo M, Sarafraz H, Najari H, Hadian MR, Forough B, Rezasoltani A. Effects of extracorporeal shock wave therapy on muscle spasticity in post-stroke patients: An ultrasonography and clinical-base study. *Phys Treatments-Specific Phys Ther J.* 2016;6 (3):169–179. doi:10.18869/nrip.ptj.6.3.169.
- Moon SW, Kim JH, Jung MJ, et al. The effect of extracorporeal shock wave therapy on lower limb spasticity in subacute stroke patients. *Ann Rehabil Med.* 2013;37(4):461–470. doi:10.5535/arm.2013.37.4.461.
- 36. Santamato A, Francesca Micello M, Panza F, et al. Extracorporeal shock wave therapy for the treatment of poststroke plantar-flexor muscles spasticity: A prospective open-label study. *Top Stroke Rehabil.* 2014;21 (sup1):S17–S24. doi:10.1310/tsr21S1-S17.
- Kim TG, Bae SH, Kim GY, Kim KY. The effects of extracorporeal shock wave therapy on stroke patients with plantar fasciitis. J Phys Ther Sci. 2015;27(2):523–526. doi:10.1589/jpts.27.523.
- Radinmehr H, Nakhostin Ansari N, Naghdi S, Olyaei G, Tabatabaei A. Effects of one session radial extracorporeal shockwave therapy on post-stroke plantarflexor spasticity: A single-blind clinical trial. *Disabil Rehabil.* 2017;39(5):483–490. doi:10.3109/ 09638288.2016.1148785.
- Sohn MK, Cho KH, Kim Y, Hwang SL. Spasticity and electrophysiologic changes after extracorporeal shock wave therapy on gastrocnemius. *Ann Rehabil Med.* 2011;35(5):599–604. doi:10.5535/arm.2011.35.5.599.
- 40. ROYAL DUTCH SOCIETY FOR PHYSICAL THERAPY. KNGF Clinical Practice Guideline for Physical Therapy in Patients with Stroke. The Netherlands: Janne Veerbeek; 2014.
- Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. *Phys Ther.* 1987;67 (2):206–207. doi:10.1093/ptj/67.2.206.
- 42. NICE NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE. Extracorporeal shockwave therapy for refractory achilles tendinopathy. interventional procedure guidance. Interventional procedures guidance (IPG571): July 18, 2018.
- 43. Ghotbi N, Ansari NN, Naghdi S, Hasson S, Jamshidpour B, Amiri S. Inter-rater reliability of the modified modified Ashworth scale in assessing lower limb muscle spasticity. *Brain Inj.* 2009;23 (10):815–819. doi:10.1080/02699050903200548.
- 44. Haugh A, Pandyan A, Johnson G. A systematic review of the tardieu scale for the measurement of spasticity. *Disabil Rehabil*. 2006;28(15):899–907. doi:10.1080/09638280500404305.
- Grosprêtre S, Martin A. H reflex and spinal excitability: Methodological considerations. J Neurophysiol. 2011;107 (6):1649–1654. doi:10.1152/jn.00611.2011.
- Dishman JD, Burke J. Spinal reflex excitability changes after cervical and lumbar spinal manipulation: A comparative study. *Spine J.* 2003;3:204–212.
- 47. Knikou M. The H-reflex as a probe: Pathways and pitfalls. J Neurosci Methods. 2008;171(1):1–12. doi:10.1016/j.jneumeth. 2008.02.012.
- Leonard CT, Deshner WP, Romo JW, Suoja ES, Fehrer SC, Mikhailenok EL. Myotonometer intra- and interrater reliabilities. *Arch Phys Med Rehabil*. Accessed 15 December 2012. 2003;84 (6):928–932. doi:10.1016/S0003-9993(03)00006-6.

- Sullivan KJ, Tilson JK, Cen SY, et al. Fugl-meyer assessment of sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials. *Stroke*. 2011;42 (2):427–432. doi:10.1161/STROKEAHA.110.592766.
- Binkley JM, Stratford PW, Lott SA, Riddle DL. North American Orthopaedic Rehabilitation Research Network. The lower extremity functional scale (LEFS): Scale development, measurement properties, and clinical application. *Phys Ther.* 1999;79:371–383.
- 51. Jorgensen JR, Bech-Pedersen DT, Zeeman P, Sorensen J, Andersen LL, Schonberger M. Effect of intensive outpatient physical training on gait performance and cardiovascular health in people with hemiparesis after stroke. *Phys Ther.* 2010;90 (4):527-537. doi:10.2522/ptj.20080404.
- 52. Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL. Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. *Physiother Theory Pract.* 2014;30(3):183–188. doi:10.3109/09593985.2013.845805.
- Holden MK, Gill KM, Magliozzi MR. Gait assessment for neurologically impaired patients: Standards for outcome assessment. *Phys Ther*. 1986;66 (10):1530–1539. doi:10.1093/ptj/66.10.1530.
- 54. Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. *Arch Phys Med Rehabil.* 2017;98(11):2213–2220. doi:10.1016/j.apmr.2017.03.008.
- McCormack HM, David JdL SS. Clinical applications of visual analogue scales: A critical review. *Psychol Med.* 1988;18:1007–1019.
- Pandyan A, Gregoric M, Barnes M, et al. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. *Disabil Rehabil*. 2005;27(1–2):2–6.
- Calota A, Levin M. Tonic stretch reflex threshold as a measure of spasticity: Implications for clinical practice. *Top Stroke Rehabil.* 2009;16(3):177–188. doi:10.1310/tsr1603-177.
- Manganotti P, Amelio E. Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. *Stroke*. 2005;36(9):1967–1971. doi:10.1161/01.STR.0000177880.06663.5c.
- Kenmoku T, Ochiai N, Ohtori S, et al. Degeneration and recovery of the neuromuscular junction after application of extracorporeal shock wave therapy. J Orthop Res. 2012;30(10):1660–1665. doi:10.1002/jor.22111.
- Kenmoku T, Nemoto N, Iwakura N, et al. Extracorporeal shock wave treatment can selectively destroy end plates in neuromuscular junctions. *Muscle Nerve*. 2018;57(3):466–472. doi:10.1002/mus.25754.
- 61. Marinelli L, Mori L, Solaro C, et al. Effect of radial shock wave therapy on pain and muscle hypertonia: A double-blind study in patients with multiple sclerosis. *Multiple Sclerosis Jl.* 2015;21 (5):622–629. doi:10.1177/1352458514549566.
- Shah S, Vanclay F, Cooper B. Improving the sensitivity of the barthel index for stroke rehabilitation. J Clin Epidemiol. 1989;42:703–709.
- 63. Kim YW, Chang WH, Kim NY, Kwon JB, Lee SC. Effect of extracorporeal shock wave therapy on hamstring tightness in healthy subjects: A pilot study. *Yonsei Med J.* 2017;58(3):644–649. doi:10.3349/ymj.2017.58.3.644.
- 64. Kim HR, Choi JH. Effects of extracorporeal shock wave therapy and stretching technique on flexibility, muscle tone and pressure pain threshold of a shortened hamstring. *J Int Acad Phys Ther Res.* 2017;8(3):1261–1265. doi:10.20540/JIAPTR.
- 65. Honeine J, Schieppati M, Gagey O, Do M. The functional role of the triceps surae muscle during human locomotion. *PloS One*. 2013;8(1):e52943. doi:10.1371/journal.pone.0052943.

- 66. Spink MJ, Fotoohabadi MR, Wee E, Hill KD, Lord SR, Menz HB. Foot and ankle strength, range of motion, posture, and deformity are associated with balance and functional ability in older adults. Arch Phys Med Rehabil. 2011;92(1):68–75. doi:10.1016/j. apmr.2010.09.024.
- 67. Fischer S, Mueller W, Schulte M, et al. Multiple extracorporeal shock wave therapy degrades capsular fibrosis after insertion of silicone implants. *Ultrasound Med Biol.* 2015;41(3):781–789. doi:10.1016/j.ultrasmedbio.2014.10.018.
- Swash M. Nitric oxide and muscle weakness. Neurology. 2011;76 (11):940–941. doi:10.1212/WNL.0b013e318210441c.
- Zissler A, Stoiber W, Pittner S, Sänger AM. Extracorporeal shock wave therapy in acute injury care: A systematic review. *Rehabil Process Outcome*. 2018;7:1179572718765138. doi:10.1177/1179572718765138.
- Walker MF, Hoffmann TC, Brady MC, et al. Improving the development, monitoring and reporting of stroke rehabilitation research: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. *Neurorehabil Neural Repair*. 2017;31(10–11):877–884. doi:10.1177/ 1545968317732686.
- Mittermayr R, Antonic V, Hartinger J, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: Technology, mechanisms, and clinical efficacy. *Wound Repair and Regeneration*. 2012;20(4):456–465. doi:10.1111/j.1524-475X.2012.00796.x.

Appendix

Search strategy Pubmed/Medline

#6 Search (shockwave OR shock waves therapy OR "extracorporeal shock waves" OR ESWT OR "Shockwave Therapies") AND (stroke*[tiab] OR poststroke*[tiab] OR hemiparesis OR hemiplegia OR apoplex*[tiab] OR cerebrovascular disorders [Mesh] OR infarction OR "brain vascular accidents") AND ((spasticity [tiab] OR muscle hypertonia [tiab] OR "muscular hypertonicity" OR "hypertonia muscle" OR "tone increased) 30

#5 Add Search (shockwave OR shock waves therapy OR "extracorporeal shock waves" OR ESWT OR "Shockwave Therapies") AND stroke*[tiab] OR poststroke*[tiab] OR hemiparesis OR hemiplegia OR apoplex*[tiab] OR cerebrovascular disorders [Mesh] OR infarction OR "brain vascular accidents") AND (spasticity [tiab] OR muscle hypertonia [tiab] OR "muscular hypertonicity" OR "hypertonia muscle" OR "tone increased" OR exaggerated)

#4 Add Search (stroke*[tiab] OR poststroke*[tiab] OR hemiparesis OR hemiplegia OR apoplex*[tiab] OR cerebrovascular disorders [Mesh] OR infarction OR "brain vascular accidents"))) AND ((spasticity [tiab] OR muscle hypertonia [tiab] OR "muscular hypertonicity" OR "hypertonia muscle" OR "tone increased OR exaggerated) 22563

#3 Add Search ((shockwave OR shock waves therapy OR "extracorporeal shock waves" OR ESWT OR "Shockwave Therapies") 5187

#1 Add Search (spasticity [tiab] OR muscle hypertonia [tiab] OR "muscular hypertonicity" OR "hypertonia muscle" OR "tone increased OR exaggerated) 532477

#1 Add Search (stroke*[tiab] OR poststroke*[tiab] OR hemiparesis OR hemiplegia OR apoplex*[tiab] OR cerebrovascular disorders [Mesh] OR infarction OR "brain vascular accidents") 693911